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Abstract

The uncertainties associated with neutrino-nucleus cross section modelling need to be

reduced in order to measure neutrino oscillation parameters, the mass hierarchy and

CP violation to a high degree of precision. SBND, a 112 ton liquid argon time projec-

tion chamber, will be the near detector of the short-baseline neutrino program at Fermi-

lab. Once data taking begins in 2022, it will provide flux constraints for sterile neutrino

searches and produce world leading neutrino-argon cross sections with up to seven mil-

lion neutrino events in three years. This thesis describes the simulation, calibration and

reconstruction tools developed to measure charged current muon neutrino interactions.

Backgrounds from cosmic ray muons, neutrino interactions outside of the detector and

different neutrino interaction channels were identified and removed as part of this process.

The signal events were selected with purity of 90% and an efficiency of 67%, providing

a strong starting point for measurements of exclusive channels. The expected statistical

and systematic uncertainties on rate predictions and cross section measurements at the

full 6.6×1020 proton on target exposure were evaluated.
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Chapter 1

Introduction

The field of neutrino physics is at the forefront of our understanding of the fundamental

processes that shape and govern our universe. Since their proposal in 1930 by Pauli [1]

and eventual discovery in 1956 by Cowan and Reines [2], neutrinos have fascinated and

baffled scientists in equal measures due to their unusual properties.

Neutrinos could hold the answers, or at least partial solutions, to the baryon asymmetry

of the universe through charge-parity violations [3], the mass scaling of particles [4] and

the existence of physics beyond the standard model [5]. In order to study the oscillation

properties of neutrinos, we must be able to detect them. They are only observable to us

via the weak force, with couplings several orders of magnitude lower than electromagnetic

or strong processes. The low interaction probability necessitates both an intense source

and a large detector. As measurements require more precision, the sources must increase

in intensity or the detectors must get larger to obtain the required data.

The interface between the fundamental properties of neutrinos and experimental mea-

surements are the interactions between the neutrinos and the nuclei of the target medium

in the detector. The drive for more data through larger detectors has tended to push the

atomic masses of the targets higher, allowing the interaction probability to be increased

without incurring extra costs which tend to scale with detector volume.

When there are multiple nucleons within a nucleus the internal dynamics and interac-
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tions must be considered to correctly interpret what is observed in the detector. As the

number of nucleons increases these internal processes become incredibly complex and we

quickly find ourselves at the cutting edge of nuclear physics.

Uncertainties in the modelling of the nuclear physics will propagate to uncertainties

on the measurements of neutrino properties. While there are techniques that can be

employed to reduce these dependencies, it is not possible to completely remove them [6].

The necessary precision of the next generation of neutrino experiments requires us to

confront these uncertainties and reduce them to a few percent.

One of these future experiments, the Deep Underground Neutrino Experiment (DUNE)

[7], will use argon as both its target and detector medium. Argon-40, with eighteen

protons and twenty-two neutrons, is one of the largest target nuclei used in neutrino

detectors. DUNE will be a Liquid Argon Time Projection Chamber (LArTPC) [8], a

detector technology not as established as others such as Cherenkov [9] and scintillator

detectors [10]. There have been a handful of excellent past and current LArTPCs but the

number of measured neutrino on argon interactions remains comparatively low.

The subject of this thesis, the Short-Baseline Near Detector (SBND) [11], aims to in-

crease the global neutrino-argon interaction data statistics. SBND will be the near detec-

tor of the Short-Baseline Neutrino (SBN) programme at the Fermi National Accelerator

Laboratory (FNAL) in the United States, probing the existence of a fourth type of neu-

trino that does not interact weakly [11]. The location near the source of an intense beam

of muon neutrinos will also provide the opportunity to measure the largest sample of

neutrino-argon interactions to date.

Due to various economic and political factors independent of the immense effort of

all of the experimental collaborators, the date of first detector operations has had to

gradually shift from 2018 to late 2022. As such, the topic of this thesis has shifted from

a measurement of the muon neutrino charged current inclusive cross section on argon to

the development of the tooling and methodology required to make such a measurement

once data taking begins.

As SBND will collect tens of thousands of neutrino interactions a week and the memory

- 2 -
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footprint of LArTPC data is large, the early development of tools to process the data

and study sensitivities is well motivated. A great deal of effort has been made to ensure

that the inclusive muon neutrino selection outlined in this thesis is readily adaptable

from simulations to real data. The following chapters will explore the motivation for

making this measurement, lay the theoretical and experimental groundwork, and describe

in detail the reconstruction and selection tools developed and their impact on the expected

sensitivity at full exposure.

Chapter 2 discusses the rich history of neutrino physics and the fundamental theory

behind neutrino oscillations and interactions. The required theoretical background of

nuclear modelling and modern neutrino-nucleus interaction models is be given as well as

an overview of past and present experiments relevant to the future SBND measurements.

Chapter 3 provides an overview of the neutrino beam that delivers a source of mostly

muon neutrinos to the SBN programme. The design and operation of the three main

detector components, the time projection chamber, the photon detection system and

the cosmic ray tagger, are described in detail. The interaction physics relevant to the

operation of each component is also discussed.

Chapter 4 covers the methods and tools developed to measure the low level performance

of the detector during both construction and operations, allowing for the calibration and

correction of effects which may propagate to the cross section measurement. The initial

work performed to develop a wire tension measurement suitable for LArTPCs is described,

this work was performed in collaboration with Dr. D. Garcia-Gamez. The later work at

the end of Section 4.1.1 was performed by the Manchester group listed in Reference [12].

A method for measuring the continuity of long capacitively coupled readout wires devel-

oped in collaboration with Dr. N. McConkey and Dr. M. Stancari is presented in Section

4.1.2. Algorithms for measuring the purity of liquid argon with through-going cosmic ray

muons are described in Section 4.2.1, this work was performed in collaboration with Mr.

D. Barker with a lot of helpful insight from Dr. M. Stancari. Through-going muons were

also used to develop tools for measuring potential misalignments between wire readout

planes in collaboration with Dr. A. Szelc, discussed in Section 4.2.3.

- 3 -



Chapter 1. Introduction

Chapter 5 describes the simulation and reconstruction tools used to develop the selection

as well as a characterisation of the reconstruction performance for νµ Charged Current

(CC) interactions. Much of the content of this chapter is descriptive with the development

of simulation and reconstruction tools performed by others. The simulation of the Cosmic

Ray Tagger (CRT) system was performed by myself and Dr. A. Mastbaum and the CRT

reconstruction tools were developed by me. I also made contributions to the Photon

Detection System (PDS) simulation and reconstruction. The tools created for evaluating

and tracking νµ CC reconstruction performance were all my own work.

Chapter 6 describes the selection of νµ CC interactions, involving the removal cosmic

ray muons, a fiducial volume definition and the identification of muons over a background

of pions and protons. The work presented in this chapter is all my own, it has been

indicated where tools developed by others have been used to facilitate this work.

In Chapter 7, the predicted detector performance is used to evaluate the sensitivity

of SBND in distinguishing between cross section model configurations. A flexible cross

section analysis framework was developed to act as the interface between the various

interaction channel measurements in SBND. As with the previous chapter, this work is

my own but tools developed by others have been used to facilitate the work. The cross

section analysis framework was developed in collaboration with Ms. R. Jones and Ms. N.

Wright.

- 4 -
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Theoretical and experimental

background

In this chapter, the historical context and modern understanding of the field of neutrino

physics is given in Sections 2.1 and 2.2. An overview of neutrino-nucleus interaction

theory in the context of accelerator based oscillation experiments is given in Section 2.3.

Section 2.4 provides a short review of current experimental results and the theoretical

challenges in the interpretation of those results.

2.1 Historical overview

2.1.1 Discovery and flavour

In 1930, Wolfgang Pauli did something that at the time was seen as extreme but is now

commonplace in theoretical particle physics, he proposed a new, seemingly undetectable

particle in order to explain an experimental result [1]. The result in question was the

continuous electron energy spectrum in the beta decay (n→ p+e−+ ν̄e) of 120Bi observed

by Chadwick in 1914 [13]. The neutrino was required in order to share the energy released

in the decay with the electron to preserve the principle of energy conservation.

The first theoretical description of beta decay was formulated by Fermi in 1934 [14]. The
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process was modelled as a transition with a rate proportional to the strength of the initial

and final state coupling and a factor related to the density of available final states, the so

called Fermi’s Golden Rule. Neutrinos were assumed to be massless in Fermi theory and

the coupling was predicted to be very small.

It turned out to indeed be very difficult to detect the neutrino, with the first neutrino

interactions observed by Cowan and Reines in 1956 by placing alternating layers of water

targets and scintillator detectors close to a nuclear reactor [2]. These neutrinos were

emitted alongside electrons, e−, in the reactor and so they could be labelled as electron

antineutrinos, ν̄e, in order to conserve lepton number and flavour.

The next discussion was whether the labelling of neutrino flavour was a theoretical con-

vention or if the neutrinos produced alongside other leptons were distinct. In 1962, Danby

et al. [15] were able to show that the muon neutrino was a different particle by measuring

interactions of neutrinos produced by a pion beam. They observed an asymmetry in the

numbers of interactions that produced electrons and muons [15]. Given that the incom-

ing neutrinos were primarily produced alongside muons and could be labelled νµ, they

concluded that the neutrino flavours were distinct.

The existence of a tau neutrino was postulated when the tau lepton was discovered in

the 1970s [16], but it was not observed until 2000 by the DONUT experiment [17] using

nuclear emulsion targets, thin layers of photographic films in between lead bricks, due to

the difficulty of observing the short tracks of tau leptons. The number of light weakly

interacting neutrino flavours was fixed at three by the precisely measured width of the Z

boson at LEP [18] and subsequent experiments [19], shown in Figure 2.1.

2.1.2 Parity non-conservation

Neutrinos only interact via the weak nuclear force, with the exchange of massive W and Z

bosons. The properties of the fundamental forces are governed by conservation laws and

hence the symmetries of the systems involved [20]. It was long thought that all interactions

should be invariant under the swapping of all particles for their antiparticles, called charge

conjugation, the inversion of spatial coordinates, called a parity transformation, or the

- 6 -
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Figure 2.1: Average measurements of the width of the Z boson resonance in the hadron
production cross section with the Standard Model predictions for two, three and four
weakly interacting neutrinos shown. Figure from [19].

reversal of time [21]. The electromagnetic and strong nuclear forces had never been shown

to vary under parity transformation, and it was assumed to also hold for weak interactions.

In 1957, Wu et al. [22] studied this claim and found a large asymmetry in the angular

distribution of electrons coming from the beta decay of nuclei with aligned spin directions.

A parity transformation is equivalent to a transformation between the two chiral states of

a system. In the massless limit chirality is equivalent to helicity, the projection of the spin

vector onto the momentum vector. An asymmetry dependent on the spin of the initial

state nucleus suggested that the weak interaction did not conserve parity.

Lee and Yang formulated the theoretical basis for this violation after discussions with

Wu, describing the neutrino field with a left and right-handed component corresponding to

negative and positive helicity [21]. They postulated that neutrinos were only left-handed

but the combination of charge and parity, CP, could be conserved if antineutrinos were

right-handed [21]. Goldhaber et al. were later able to show that the weak interaction

only couples to left-handed neutrinos by measuring the polarisation of photons from beta

decay bremsstrahlung [23].

- 7 -
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2.1.3 Neutrino oscillations and mass

In 1939, the theory of solar fusion was developed by Bethe [24], it predicted that the

sun would produce neutrinos but they would only be involved in beta decay and the

inverse process (ν + p → e+ + n), and so only electron neutrinos would be produced.

Solar neutrinos were observed by Davis et al. in 1968 [25] through the capture of electron

neutrinos on chlorine-37, but the measured rate of these interactions was only one third

of the predicted number. This puzzling result was known as the solar neutrino problem.

Before this observation, Pontecorvo [26, 27], Maki, Nakagawa and Sakata [28] had pro-

posed a mechanism of neutrino oscillation through the expression of flavour eigenstates

as superpositions of mass eigenstates that had the potential to explain the deficit, but it

required massive neutrinos. By this time, the Standard Model (SM) of particle physics

had been developed and, like the Fermi theory, required the neutrino to be massless [29].

There was a reluctance to adopt the theory of neutrino oscillations as it described the

neutrino flavour states as superpositions of mass states, and hence required neutrinos to

have non-zero mass [28].

Possible anomalous results were also observed in atmospheric neutrino data by the

IMB [30] and KAMIOKA [31] experiments and then confirmed by the Super-Kamiokande

experiment [32]. This, along with an explanation of the solar neutrino deficit by SNO

[33], was sufficient evidence for massive oscillating neutrinos. As neutrinos are massive,

it is possible to perform a Lorentz boost into a reference frame where the the momentum

vector is flipped, and so it is the chirality of neutrinos that is strictly left-handed rather

than the helicity as previously thought.

2.2 Neutrino physics

2.2.1 Neutrinos in the Standard Model

The Standard Model of particle physics describes the fundamental building blocks of

nature as interacting fields and particles as excitations of those fields. The dynamics of

- 8 -
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a field can be described by the Lagrangian density and the equations of motion can be

obtained through the principle of least action [29]. Neutrinos are subject to Fermi-Dirac

statistics as they have half-integer spin and are excitations of a fermion field, ν(x, t), with

a Lagrange density,

L = iνγµ∂µν −mνν (2.1)

where γµ are the gamma/Dirac matrices and ν = ν†γ0 is the adjoint neutrino field, with

νν being a Lorentz invariant quantity [29]. This gives the equation of motion known as

the Dirac equation,

(γµ∂µ −m)ν(x, t) = 0. (2.2)

As proposed by Lee and Yang [21], the neutrino field can be separated into left and

right-handed chiral components ν = νL + νR, where

νL ≡ PLψ ≡
1− γ5

2
ν

νR ≡ PRψ ≡
1 + γ5

2
ν.

(2.3)

The neutrino interaction term in the SM Lagrangian can then be written as

Lint =
∑

α=e,µ,τ

[
g√
2

(
να,Lγ

µlα,LW
+
µ + h.c.

)
+

g

2 cos θw
να,Lγ

µνα,LZµ

]
(2.4)

where g is the weak coupling constant, θw is the weak mixing angle [34] and only left-

handed neutrinos, να,L, couple to the weak gauge bosons, W+
µ and Zµ [29].

The SM is invariant under the symmetry group SU(3)×SU(2)×U(1) where the SU(2)

and U(1) gauge symmetries generate the electroweak interactions [29]. The left-handed

leptonic fermion fields are SU(2) doublets, (eL, νL), containing charged leptons and neu-

trinos, and the right-handed fields are singlets, (eR), containing only charged leptons

[35].

The masses of the charged leptons, quarks and gauge bosons are generated by sponta-

neous symmetry breaking which involves the coupling of the left-handed and right-handed

components of the fermion field to the Higgs field [36]. The Higgs mechanism can be used

- 9 -
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to add a neutrino Dirac mass term of the form [35]

LDirac = −mνLνR + h.c. (2.5)

This would require a sterile right-handed neutrino that is neutral under SU(2)×U(1), not

coupling to any SM interactions. Adding mass in this way would imply that the neutrino

masses should be comparable to the lepton masses when they are known to be orders of

magnitude smaller [29].

Neutrinos are, however, the only neutral fermions, which provides more flexibility in

how they can be treated. It does not break any conservation laws to define

νR ≡ (νL)c (2.6)

where (νL)c is the charge conjugate of νL. This would make the neutrino its own antipar-

ticle, in a similar way to the photon and π0. This is what Majorana proposed in 1937 [37]

and it leads to the mass term

LMajorana = −1

2
m(νL)cνL + h.c. (2.7)

It is possible to have Dirac and Majorana mass terms simultaneously when both active

and sterile neutrinos exist [35]. This can give rise to the see-saw mechanism [38] where

the mass of the observed neutrinos can be suppressed if there also exists a very heavy

neutrino. One of the motivations for this is that the neutrino masses are known to be at

least six orders of magnitude below the other fermion masses [39].

2.2.2 Neutrino oscillations

The Dirac mass term of Equation 2.5 can be written as

∑
α,β=e,µ,τ

(mαβνα,Lνβ,R + h.c.) (2.8)

- 10 -
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where the mass matrix of the flavour states, mαβ, is off-diagonal, meaning that the flavour

eigenstates, να, do not have a definite mass. The mass matrix can be diagonalised using

two unitary matrices, U and V , such that,

mD = U †mαβV (2.9)

where mD = diag(m1,m2,m3) are the masses of the mass eigenstates [40]. The neutrino

mass eigenstates are then defined in terms of the flavour eigenstates as

νj,L ≡
∑
α

Uαjνα,L

νj,R ≡
∑
α

Vαjνα,R

(2.10)

to ensure the Dirac mass term remains the same in mass or flavour basis.

As only the left-handed neutrinos couple to the weak force, the right-handed term can be

ignored and chirality indices dropped when considering neutrino oscillations. The flavour

eigenstates of the weak interaction can be written as a superposition of mass eigenstates

in a similar way to Equation 2.10,

|να〉 =
∑
i

U∗αj |νj〉 . (2.11)

The neutrino can be treated as a plane wave and will evolve in time according to the mass

eigenstates as they are the eigenstates of the free Hamiltonian [40]. The wave function at

distance L and time t after production will therefore be

|να(L, t)〉 =
∑
j

U∗αje
ipjL−iEjt |νj〉 (2.12)

where the mass eigenstate energies, Ej, and momenta, pj, are in general different.

We are only able to produce and observe the neutrinos through their weak interactions.

The probability amplitude for a neutrino to be produced as the weak eigenstate |να〉 and

- 11 -
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detected as weak eigenstate 〈νβ| after travelling a distance L in time t is given by

〈νβ|να(L, t)〉 =
∑
j,k

U∗αjUβke
ipjL−iEjt 〈νk|νj〉

=
∑
j

U∗αjUβje
ipjL−iEjt.

(2.13)

The probability for a neutrino to oscillate between weak eigenstates can be obtained from

the square of the probability amplitude [29]

Pαβ(L, t) = |〈νβ|να(L, t)〉|2 =
∑
j,k

U∗αjUβjUαkU
∗
βke

i(pj−pk)L−i(Ej−Ek)t. (2.14)

It is the energy rather than the detection time that is measured by the experiment and

so the probability should be integrated over time and divided by a normalisation constant,

N , to give

Pαβ(L) =
1

N

∫
dt |Pαβ(L, t)|2

=
1

N

∑
j,k

U∗αjUβjUαkU
∗
βk exp

[
i(
√
E2 −m2

j −
√
E2 −m2

k)L

]
δ (Ej − Ek)

'
∑
j,k

U∗αjUβjUαkU
∗
βk exp

[
−i

∆m2
jkL

4E

] (2.15)

where ∆m2
jk ≡ m2

j −m2
k and E is the neutrino energy [41].

The unitary matrix, U , for three flavour mixing can be constructed by considering that

a general 3 x 3 unitary matrix is formed of three real parameters and six complex phases.

In the Dirac case, the redefinition of the neutrino fields, να(j) → eiφα(j)να(j), can absorb five

of the complex phases [40]. The last complex phase cannot be absorbed because a phase

factor applied to all fields would leave U unchanged. The most common parametrisation

of the three real parameters (θ12, θ13, θ23) and 1 complex phase (δ) is the PMNS matrix
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[28],

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



=


1 0 0

0 c23 s23

0 s23 c23




c13 0 s13e
−iδ

0 1 0

−s13 0 c13




c12 s12 0

−s12 c12 0

0 0 1


(2.16)

where cαβ ≡ cos(θαβ) and sαβ ≡ sin(θαβ).

The probability is more easily interpretable for the case of two neutrino flavours. The

mixing matrix can be parametrised by a single angle, θ, controlling the strength of the

mixing between the two flavours,

U =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 . (2.17)

The probability then simplifies to

Pαβ(L) = sin2(2θ) sin2

(
∆m2L

4E

)
. (2.18)

The mass splittings ∆m2 and matrix elements Uij are natural constants that must

be determined by experiment. L/E can be chosen for an experiment to be maximally

sensitive to the mixing parameters. It turns out that θ13 is very small [42] and the two

flavour approximation is appropriate for a pure source of electron neutrinos that oscillate

into muon neutrinos, as in the Sun, and muon neutrinos oscillating into tau neutrinos, as

in the atmosphere.

Solar and reactor neutrino experiments are sensitive to θ12, the third component of Equa-

tion 2.16, and ∆m2
32 after taking into account MSW matter effects [43, 44]. Atmospheric

and accelerator experiments are sensitive to θ23, the first component of Equation 2.16,

and |∆m2
31| ≈ |∆m2

32| provided that L� 2E/∆m2
21 which allows the ∆m2

21 exponentials

to be neglected. Short baseline reactor neutrino experiments are sensitive to θ13 when

∆m2
21L/(2E)� 1.
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Table 2.1: The best global fit values for the oscillation parameters as of July 2019 from
the NuFit group (v4.1) [42] as given in the Particle Data Groups review of particle physics
[45]. The fit assumes normal mass ordering as this is favoured with a ∆χ2 = 6.2.

Oscillation Parameter Best Fit

θ12 (deg) 33.82+0.78
−0.76

θ23 (deg) 48.3+1.1
−1.9

θ13 (deg) 8.61+0.13
−0.13

δCP (deg) 222+38
−28

∆m2
21 (10−5 eV 2) 7.39+0.21

−0.20

∆m2
3(1,2) (10−3 eV 2) 2.523+0.032

−0.030

The current best fits of the neutrino oscillation parameters from the NuFit group [42]

are summarised in Table 2.1.

A non-zero value for δ would cause an asymmetry between interactions involving neu-

trinos and interactions involving antineutrinos, known as Charge-Parity (CP) violation.

CP violation is one of the requirements for baryogenesis [3], the leading theory for the

observed matter-antimatter asymmetry in the universe. It has been observed in the quark

sector [45], but only a small fraction of the amount required for baryogenesis.

If neutrinos are Majorana particles rather than Dirac particles as discussed in Section

2.2.1, it is also possible to follow a similar process to derive neutrino oscillations but two

more complex phases are added to the mixing matrix [40]. These phases would affect

lepton number violating processes such as neutrinoless double beta decay [46], but not

oscillations [47], and so oscillation experiments are not sensitive to this difference.

2.2.3 Accelerator based neutrino experiments

Neutrinos offer one of the best windows into Beyond the Standard Model (BSM) physics

as the SM framework does not allow them to have mass and oscillate [29]. Table 2.1

demonstrates that we are entering the era of precision neutrino oscillation measurements

but there still exist a number of key unknowns. The first is the absolute value of δ which

will provide the amount of CP violation in the leptonic sector. The second is the sign of

|∆m2
3(1,2)|, the mass ordering, where a positive sign is defined as normal ordering and a
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Figure 2.2: The two possible neutrino mass orderings, normal ordering (NO) and in-
verted ordering (IO). The magnitudes of the ∆m2 are equivalent for both normal and
inverted ordering. Image from [4]

negative sign inverted ordering, shown in Figure 2.2.

Accelerator based experiments are at the forefront of determining these unknowns [48,

49] and the next generation of experiments will likely be able to reach the 5σ significance

level required for a discovery [7, 50].

There are also many possible extensions to the three neutrino model that attempt to

resolve some of the issues with the SM description. Figure 2.1 shows that the number of

weakly interacting neutrinos is fixed at three, but it is possible to add sterile neutrinos

which would alter oscillation probabilities.

Some of these models have physical motivations, such as heavy sterile neutrinos which

could be candidates for dark matter [51]. Other models are in response to short-baseline

anomalies seen in νe appearance at LSND [52] and MiniBooNE [53], ν̄e disappearance at

reactor experiments [54], and neutrino deficits in radioactive source experiments [55]. The

global fits to these data [56] favour light sterile neutrinos with a mass splitting ∆m2 ≈ 1

eV2. However, much of the allowed phase space has been disfavoured by νµ disappearance

experiments [57, 58].

To understand the challenges of making precision oscillation parameter measurements

it is necessary to describe how an accelerator based experiment works. For detecting

the appearance of a neutrino species, the rate of neutrino interactions in a detector is
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measured,

R(Evis) = N

∫
dEΦασβ(E,Evis)εβ(E)P (να → νβ, E) (2.19)

where N is the overall normalisation, Φα is the flux of να, σβ is the cross section for νβ

and εβ is the detection efficiency for νβ.

If one was to try to measure the oscillation probability with a single detector, then all of

these components would need to be known to some degree of certainty. If, instead, another

detector is placed near the source of the neutrino beam, the disappearance probability

can be measured by taking the ratio of the two rates

Rα→α(far)L2

Rα→α(near)
=
NfarΦασαεαP (να → να)

NnearΦασαεα
=
Nnear

Nfar

P (να → να) (2.20)

and in an ideal world all of the unknowns cancel out.

This picture is a lot more complicated in practice. For example, in an appearance

measurement the cross sections and efficiencies do not cancel,

Rα→β(far)L2

Rα→β(near)
=

Nfarσβεβ
Nnearσαεα

P (να → νβ). (2.21)

The two detectors will also not see the same flux distribution in neutrino energy as it will

vary with the angle from the beam centre. The near and far detectors will often have

different target materials due to scaling constraints and even when the detectors operate

on the same principle the acceptance of the detectors will be different.

In order to make measurements to 5σ statistical significance and possibly observe BSM

physics it is going to be critical to constrain the systematic uncertainty on all of these

components as much as possible. One of the most active areas related to this, and the topic

of this thesis, is the field of neutrino-nucleus interactions which are crucial for estimating

the energy of the incoming neutrino, calculating the detector efficiency and projecting

between the near and far detectors.
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Figure 2.3: Feynman diagram of a neutrino scattering on a point-like fermion with the
exchange of a weak vector boson, with the incoming and outgoing momenta labelled.

2.3 Neutrino-nucleus interactions

2.3.1 Weak interaction cross sections

The picture of neutrino interactions has developed from all particles interacting at a

singular point in Fermi’s theory to the current description of the weak force where the

interaction is mediated by massive charged, W , and uncharged, Z, vector bosons. The

simplest neutrino interaction process is the scattering off point-like fermions, Figure 2.3,

at energies where the fermion mass can be neglected.

A cross section is simply the probability that a process will occur. The cross section for

the generic 2-body scattering process in Figure 2.3 is given by [29]

dσ =
1

Φ

1

2Eν

1

2Ef
|A|2 d3k′

(2π)32Eν′/l

d3p′

(2π)32Ef ′
(2π)4δ(4) (k + p− k′ − p′) (2.22)

where Φ is the flux, Ei are the energies, pi are the momenta and A is the probability

amplitude. The Feynman rules [29] can be used to obtain the amplitude.

The case of neutrino nucleus scattering follows this general formalism and the double

differential cross section can be written in the Born approximation as [59]

d2σ

dE ′dΩ′
=

1

16π2

G2

2
LµνW

µν (2.23)
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where Ω is the solid angle, G = GF is the Fermi constant for Neutral Current (NC), and

G = GF cos θc for CC, θc being the Cabbibo angle. The size of GF is suppressed by the

mass of the W boson, MW , which becomes clear when it is expressed in terms of an overall

weak coupling constant, gW , that is the same magnitude as the electromagnetic coupling,

GF =

√
2

8

(
gw
MW

)2

. (2.24)

The information about the leptonic component is contained in the leptonic tensor

Lµν = 8
[
kµk

′
ν + k′µkν − gνµk · k′ ± iεµναβk′αkβ

]
(2.25)

where the ± is for neutrinos and antineutrinos. This part does not depend on the structure

of the hadronic system and can be derived from Quantum Field Theory (QFT) by hand

with enough patience [29].

The hadronic tensor can be expressed as [60]

Wµν =
∑
σiσf

1

2Ep

∫
d3p′

2Ep′
〈N(p) |Jµ|N ′ (p′)〉 〈N ′ (p′) |Jν |N(p)〉 δ(4)(p′ + k′ − p− k) (2.26)

where 〈N(p)| and |N ′(p′)〉 are the initial and final states of the nuclear system and Jµ is

the electroweak nuclear current operator.

The current operator contains terms which transform as vectors and terms which trans-

form as axial vectors and can be written in terms of these components

〈N(p)| Jµ |N ′(p′)〉 = 〈N(p)| JµV + JµA |N
′(p′)〉

JµV = F1γ
µ + iσµνqν

F2

2M

JµA = −γµγ5FA − qµγ5
FP
M

(2.27)

where the F1, F2, FA and FP are all functions of the vector and axial vector form factors

and are different for Electromagnetic (EM), CC and NC scattering [60].

Most of the form factors can be determined from electron scattering experiments where
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the incoming energy and momentum transfer can be known precisely [61]. The axial form

factor, however, can only be measured in weak scattering experiments. Historically, it has

been parametrised with a dipole form

FA
(
q2
)

=
gA

(1− q2/M2
A)

2 (2.28)

where gA = FA(0) = 1.26 is known from neutron β decay [62] and MA is known as the

axial mass and is fit to data. This parametrisation has worked well for other form factors

[63] but there is no physical motivation for it in this case and other parametrisations are

gaining popularity [64].

When the momentum transfer is large enough, around 300-400 MeV, it can be assumed

that the scattering off a single nucleon is the dominant process, this is called the Impulse

Approximation (IA) [65, 66]. The IA allows the nuclear cross section, σA, to be written

in terms of the bound nucleon cross section, σN ,

dσA =

∫
dEd3kdσNP (k, E) (2.29)

where P (k, E) is the probability of removing a nucleon with momentum k and leaving

the residual nucleus with excitation energy E, called the Spectral Function (SF) [67].

Realistic models of nuclei are required to produce spectral functions and hence cross

section predictions that can reproduce data.

Neutrino beams are not monochromatic and the wide neutrino energy spectra result

in an even wider range of energy transfers. This usually means that the applicability of

certain approximations, such as the IA, varies and a collection of interaction models must

be used to fully cover the energy spectrum of the beam. Nuclei with large atomic numbers

are also very complicated many-body problems in Quantum Chromo-Dynamics (QCD)

and it is essential for the field of neutrino physics to include the latest developments in

nuclear theory and experiment in order to improve the composite cross section models

[6].
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Figure 2.4: Global Fermi gas model illustration. Dark circles are states filled with
protons and white circles are states filled with neutrons. The bounding box represents
the potential well with the shape difference being due to the additional Coulomb forces
acting on the protons. Image from [69].

2.3.2 Nuclear models

The starting point for many nuclear models is the Global Fermi Gas (GFG) model [68] in

which nucleons are allowed to move freely in a constant binding potential while obeying

the Pauli exclusion principle, as illustrated in Figure 2.4. The Fermi energy, the difference

between the highest and lowest occupied states, is just a step function out to the radius

of the nucleus and the binding energy is the difference between the Fermi energy and the

top of the potential well [69]. This is the simplest mean field model and is able to give

reasonable inclusive cross section predictions at Quasi-Elastic (QE) kinematics [70] but it

only contains statistical correlations between nucleons from the exclusion principle.

The next level of complexity involves approximating a spherical nucleus as a series

of concentric spheres with constant density, called the Local Fermi Gas (LFG) model

[71]. This results in the nuclear density, and hence the Fermi momentum, varying as a

function of the distance from the center of the nucleus as shown in Figure 2.5. Relativistic

corrections to the momenta are included in the Relativistic Fermi Gas (RFG) model [72]

by solving the Dirac equation for a gas of non-interacting fermions in a spherical potential

well.
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Figure 2.5: Fermi momentum as a function of radial distance of nucleon from the center
of the nucleus for global and local Fermi gas nuclear models. Image credit: T. Golan.

Figure 2.6: Spectral function of oxygen-16 calculated with a shell model and a Fermi
gas model. Image credit: A. Ankowski.

In all of these Fermi gas models, the nucleons are able to move freely within the nucleus.

In reality, nucleons are subject to an average central potential from the other nucleons.

For a given nucleus, a theorist needs to determine the form of this potential that best

describes experimental results. The most common way of doing this is to make an initial

guess and use the Hartree-Fock method [73] to iteratively improve the potential. This

mean field approach is called the shell model. Relativistic effects can be included by

describing the nucleus as a system of Dirac nucleons interacting via meson fields in a

relativistic mean field model [74]. The difference between spectral functions obtained

using a shell model and a Fermi gas model is shown in Figure 2.6.
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All of these mean field models treat the nucleons as independent and the SFs obtained

from them only describe the probability of a single nucleon being removed. However,

electron scattering experiments have previously shown deviations from expected results

[75] that required the consideration of short-range correlated pairs of nucleons. Around

20% of nucleons in the nuclei are correlated via the exchange of mesons [76], called Meson

Exchange Currents (MEC), or initial state correlations. These nuclear dynamics can be

described by adding the 2-body currents to the Hamiltonian [77].

At lower momentum transfers it is also important to include long-range correlations

over the entire nucleus, a popular way of doing this is the Random Phase Approximation

(RPA) [78, 79] where collective excited states are described as linear combinations of one

particle-one hole (1p-1h) and two particle-two hole (2p-2h) excitations. 1p-1h and 2p-2h

refer to the number of nucleons involved in the interaction and in general it is possible

for three or more nucleons to be correlated so these processes are collectively referred to

as np-nh.

2.3.3 Neutrino-nucleus cross section models

The previous section provided only the briefest of introductions to the complicated and

interesting world of nuclear physics in order to give a frame of reference for the neutrino

cross section models used in modern day experiments. The choice of nuclear model used

for calculating cross sections can have significant impact in certain regions of phase space,

particularly when many-body currents are involved.

The energy range of a typical neutrino beam, Figure 2.7, and the complexity of the

interaction mechanisms, means that it is very rare that a single cross section model can

be used in order to cover the range of potential energy transfers. Cross section models

for different interaction processes in different kinematic regimes must be combined and

interfaced with neutrino scattering experiments through Monte Carlo generators which

will be discussed in Section 5.1.1.

There is active development in the field of nuclear modelling and as a result generators

often do not contain the most state of the art cross section models. This is due to the
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Figure 2.7: Cross section dependence on neutrino energy with the energy range of the
beam used by SBND shown. The MEC contribution is not shown here but is expected to
peak in the dip region between QE and RES scattering. Figure modified from [80].

non-trivial difficulties in converting the analytic theoretical models to the random variable

based models required by Monte Carlo generators, and the care required when dealing

with the transition regions between models [81]. This section will cover the common

models used in neutrino generators to the level required for understanding the results

presented in this thesis.

Quasi-elastic scattering

Below neutrino energies of around 1 GeV, the dominant interaction process is QE scatter-

ing. Here, the energy transfer is small compared to the incoming neutrino energy but the

momentum transfer is high enough that the IA can be used. A common parametrisation

for this regime is the Llewellyn-Smith model [60], Equations 2.27 and 2.28, where the

cross section is written in terms of vector and axial form factors. A Feynman diagram

for a muon neutrino Charged Current Quasi-Elastic (CCQE) interaction with a nucleus

is shown in Figure 2.8.

As the energy increases further, electron and neutrino scattering experiments have shown

that multi-nucleon emission becomes important [75]. This is where a lot of the active

development in neutrino-nucleus cross section theory is ongoing as the np-nh processes
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Figure 2.8: Feynman diagram of charged current quasi-elastic scattering between a
muon neutrino and a nucleus, N .

Figure 2.9: Feynman diagram of a charged current neutrino scattering with a two body
current where a pion is exchanged between two nucleons. This is only one of many possible
MEC contributions.

require an accurate description of the entire nucleus. This is being pioneered by the

Valencia [82, 83], SuSA [84], Martini-Ericson [85], Ghent [86] and other groups. An

example of one of the diagrams which contribute to two body currents is shown in Figure

2.9.

The Valencia (Nieves et al. [83]) model in particular will be important later. It is

constructed of both a QE and MEC component. The QE component is based on an LFG

with Pauli blocking, Fermi motion, removal energy, Coulomb distortion and long and

short-range correlations from the RPA included [83]. The MEC component is constructed

from a many-body expansion of 2p-2h processes [83].
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Figure 2.10: Feynman diagram of charged current muon neutrino scattering with reso-
nant pion production.

Pion production

At the lowest energies a neutrino is able to interact coherently with the entire nucleus and

produce a pion while leaving the target nucleus in the same state [87, 88], in a process

called Coherent pion production (COH). The contribution of this channel to the inclusive

cross section is small for the neutrino energies at SBND between 0.2 to 3 GeV.

In the energy region of approximately 1 to 5 GeV, Resonant pion production (RES)

dominates. The nucleon forms a resonance, usually a ∆, after interacting with a weak

boson and this quickly decays to a nucleon and a pion, as shown in Figure 2.10 for the

CC process.

This process was historically described using the Rein-Sehgal model [89]. This starts

from the Feynman-Kislinger-Ravndal model [90, 91] in which baryon resonances are

treated as excited three quark states in a relativistic harmonic oscillator potential in

order to compute their wavefunctions. The amplitudes of these wavefunctions are then

calculated individually for each helicity rather than summing over them. The helicity am-

plitudes that will couple to neutrinos through the weak interaction are used to construct

cross sections [89].

The Rein-Sehgal model has more recently been improved by Berger and Seghal [92] by

including effects due to the mass of the lepton and one meson exchange, the pion pole.

Berger and Seghal have also formulated a model of COH [93].
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Figure 2.11: Feynman diagram of charged current deep inelastic scattering of a muon
neutrino on a nucleus.

Deep inelastic scattering

Beyond around 5 GeV the QE and RES cross sections drop off while the Deep Inelastic

Scattering (DIS) cross section increases. At high energies, the cross section increases fairly

linearly with neutrino energy. In this region the neutrino is able to resolve individual

quarks within nucleons and the final state nucleus breaks up, as in Figure 2.11. When

dealing with quark systems, QCD must be employed. High energy QCD is an advanced

field as it is required to understand the data at the energy frontier of particle physics,

although many of these calculations are performed at much higher energies than those in

a typical neutrino beam with peak energies between 0.5 and 5 GeV.

Bodek and Yang [94] applied a scaling factor to parton distribution functions from QCD

so they were applicable at lower momentum transfers. They used this scaling to formulate

a DIS cross section model by also accounting for target mass corrections, non-perturbative

QCD effects and higher order terms [94].

The transition region between resonant pion production and DIS does not have a con-

sistent theoretical model in modern generators due to the different techniques used in

constructing the different models. Generators must attempt to smoothly transition be-

tween models while taking care to avoid double counting [91].
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Figure 2.12: Typical final state interaction processes that could occur after a charged
current muon neutrino scatter on a nucleus. Image credit: T. Golan.

2.3.4 Final state interactions

There is another complicating factor to measuring neutrino-nucleus cross sections that

must be addressed, Final State Interactions (FSI), the need for final state particles to

propagate out of the nucleus [95], as shown in Figure 2.12. When a neutrino interacts

with a nucleon via the charged current, the outgoing lepton is largely unaffected by

the nucleus. However, the emitted mesons and nucleons must pass through the nuclear

medium before they can be detected in an experiment. The result of this is that unless the

nuclear target is hydrogen or helium, the true interaction cannot be definitively deduced.

Generators must model the propagation of particles created at the primary interaction

vertex through the nucleus. Most do it with the intranuclear cascade models [96] where

particles are assumed to be classical and move according to their mean free path before

new interactions are generated. A more realistic approach is the use of transport theory

as implemented by the GiBUU generator [97]. The Boltzmann-Uehling-Uhlenbeck (BUU)

equation employed in GiBUU uses quantum mechanical reaction theory to describe many-

body effects which evolve dynamically during the course of a reaction.

Due to difficulties in propagating model uncertainties via reweighting, described further

in Section 7.4.1, transport theoretical approaches are not yet commonly used by neutrino
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experiments. The GENIE generator [98] used in this thesis has two intranuclear models

called hA and hN. The hA model simulates one effective interaction and tunes the output

to cross section data to form an empirical model while the hN model performs a full

intranuclear cascade simulation to make predictions of final states [91].

2.4 Neutrino cross section experiments

As the previous sections have demonstrated, a lack of knowledge of the incoming neutrino

energy, the dynamics of the nuclear target, and the underlying interaction of observed

events make neutrino cross section experiments challenging. This section will discuss the

historical context of neutrino-nucleus cross sections and review the most recent experimen-

tal status. In the context of oscillation experiments it is usually the CCQE or inclusive

channel that is used as the signal. Cross section measurements are required to reduce

uncertainties in estimating detector efficiencies, reconstructing the neutrino energy, and

scaling between near and far detector.

The first experiments to make neutrino cross section measurements were bubble cham-

bers in the 1970s and 1980s [99–102]. Hydrogen and deuterium were mostly used as targets

and the neutrino-nucleus interactions could effectively be treated as two-body problems,

as in Figure 2.3. They produced total cross sections for CCQE scattering, single and

multiple pion production, and neutral current interactions [80].

Argonne National Laboratory (ANL) produced the first muon neutrino CCQE cross

section in 1977 [100] shown in Figure 2.13. The axial form factor of Equation 2.28 was the

only free parameter for QE scattering when treated as a two-body interaction with minor

Pauli blocking and binding energy corrections. Measuring CCQE used to be equivalent to

fitting for the axial mass, MA, and the bubble chamber experiments gave a world average

of MA = 1.026 ± 0.021 GeV/c2 [103], shown in Figure 2.14.

Some of the same assumptions in the treatment of the scattering kinematics were made

when transitioning to heavier targets in the same energy range. MiniBooNE [104] was a

Cherenkov detector that used mineral oil, composed of carbon and hydrogen, as both its
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Figure 2.13: ANL CCQE total cross section, the events were scanned by eye to identify
the interactions and the large uncertainties came from limited knowledge of the flux.
Figure from [100].

Figure 2.14: MA bubble chamber world average from CCQE scattering experiments
giving MA = 1.026± 0.021 GeV/c2. Figure from from [103].
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Figure 2.15: MiniBooNE cross section data with cross section predictions for different
values of MA. Figure from [106].

target and detection medium. It was designed for the purpose of testing the anomalous

electron neutrino appearance signals observed in LSND [52] and located in the Booster

Neutrino Beam (BNB) [105] with an average neutrino energy of 0.8 GeV.

Systematic uncertainties were controlled by measuring muon neutrino interactions, and

this led to the first flux-integrated double differential CCQE cross section measurements

[106]. CCQE was defined as only a muon detected in the final state, and a data driven

method was used to correct for missed pions [106]. All of the models at the time seemed

to significantly underestimate the MiniBooNE data [107]. When the axial mass was fit to

the data it gave a result of MA = 1.35 ± 0.17 GeV/c2, 2σ from the world average, as can

be seen in Figure 2.15. It was clear that work was needed understand the nuclear effects

of the carbon target nuclei.

This anomalous result was one of the reasons that there is closer collaboration between

nuclear theory and neutrino cross section researchers today [6]. The theories of multi-

nucleon emission first developed to describe electron scattering data [75] were applied to

try to explain the MiniBooNE result with some success [85], as can be seen in Figure 2.16.

Several of these np-nh models, which can include both MEC and initial state correlations,

improve the agreement with the data without having to alter the value of MA far from

the global best fit. However, there are a number of degeneracies between models using

different physics that require more precise data to distinguish between them [6, 59].
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Figure 2.16: MiniBooNE data with the cross section prediction of Martini et al.’s [85]
QE + np-nh model. Figure from [85].

The need to account for FSI has led to a shift in the signal definitions over time from

CCQE to CCQE-like, where np-nh contributions are included but pion absorption is

accounted for, to CC0π, where the event is defined solely by the final state topology and

minimal model dependent corrections have been applied [59]. In the case of CC0π, a muon

from the neutrino interaction is identified with no reconstructed charged or neutral pions

in the final state, but it can include any number of reconstructed protons if this is not

specified. This has made it more challenging for theorists to compare their models with

different experimental data, but the data are more resilient to significant model changes

that may occur in the future.

Several experiments have contributed to the modern picture of neutrino-nucleus cross

sections alongside MiniBooNE but it is especially worth highlighting T2K [9] and MIN-

ERvA [10]. The off-axis T2K near detector ND280 [9] in the J-PARC neutrino beam

with an average energy of 0.6 GeV [108] has an active cross section programme to reduce

systematic uncertainties for oscillation analyses. MINERvA was an experiment designed

to measure neutrino interactions on different target materials, it had an active target of

plastic scintillator and passive targets of iron, lead, water and helium. It used the NuMI

beam at FNAL with an average energy of around 3 GeV in low energy mode [109].

Both experiments have published several inclusive and exclusive muon neutrino cross

sections on a variety of targets, mainly water and hydrocarbon. The inclusive measure-

ments tend to show an overall agreement with models within the current uncertainty

budget [110, 111] and the inclusion of np-nh models to fill in the dip region between QE

and RES scattering is required.
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(a) (b)

Figure 2.17: CC resonant π+ production on (a) protons and (b) neutrons in bubble
chamber experiments. Figures from [80].

The ability for models to describe inclusive and CCQE-like/CC0π cross sections in terms

of lepton kinematics is not entirely sufficient on its own as oscillation experiments need

to reconstruct the neutrino energy in their analyses. There are two main approaches

used. The first is to use the kinematics of CCQE interactions to determine the energy

from the lepton four-momentum [59] and the second is to add the lepton energy to the

associated calorimetric energy from the hadronic system [48]. The detector and beam will

determine the method used as CCQE peaks at relatively low energy and good calorimetry

is required for the hadronic energy. Both methods require model dependent corrections,

CC0π must be corrected for missed pions and np-nh processes, and the hadronic energy

must be corrected for invisible energy contributions from neutrons and FSI.

In order to understand the pion production contribution to the CCQE kinematic recon-

struction and avoid bias in oscillation analyses, the single pion production cross section

needs to be studied. Uncertainties on the bubble chamber data, shown in Figure 2.17,

were high but there has been activity in this area to try to reduce them [112]. There have

also been a number of pion production measurements from more modern experiments

such as those highlighted above. There have been great advances in detector design and

theoretical modelling, but tensions between data sets exist, especially when cross sections

are given in pion kinematic variables.

One of the most prominent is the disagreement between MiniBooNE and MINERvA pion

production data [113]. The experimental cross sections are flux integrated and therefore
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not directly comparable, but the data and theoretical predictions can be compared. The

theory predicts the shape of MINERvA data well but not the normalisation, and vice

versa for the MiniBooNE data [113]. There are currently no models that can describe

both sets of data simultaneously [114–117] but there are ongoing efforts to tune the physics

parameters inside generators to better fit the data [118].

T2K has also measured differential CC1π+ cross sections on hydrocarbon [119]. The

hydrocarbon pion production data appears to be overestimated by the cross section models

[119] in a similar way to the MINERvA data, but the exact model configurations are

unlikely to be the same and a simultaneous analysis of all three data sets is yet to be

performed. There is still room for improvement in both the modelling and measurements

of pion production [59].

The calorimetric energy reconstruction method requires a good understanding of multi-

nucleon emission and FSI processes to make the required corrections. One of the best

ways to evaluate the performance of both of these model components is to study protons

in the final state topology, such as CC0π1p. Studies like this are already being performed

for T2K and MINERvA data, for example, by looking at transverse kinematic variables

of the muon and proton [120].

The millimetre-scale spatial resolution of LArTPCs offers an opportunity to study np-

nh processes with even greater detail through observations of protons down to kinetic

energies of 21 MeV [121]. ArgoNeuT [122] has demonstrated the potential of this and

produced inclusive differential cross sections [123], but its small size means that more

exclusive channels would be statistically limited.

The larger MicroBooNE [124] detector has recently produced its first muon neutrino

charged current inclusive cross section measurement [125] and results from exclusive chan-

nels where the final state topologies include the number of emitted protons are expected.

The inclusive results favour the GENIE model configuration that is similar to the one used

for the majority of this analysis. SBND, discussed in greater detail in the next chapter,

will measure between five and seven million neutrino-argon interactions and open up the

potential to push the theoretical models to their limits.
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The width of the neutrino beam energy and unknown energy transfer in the scattering

processes make it difficult to constrain individual cross section model parameters with

neutrino data. This is especially true for inclusive data where degeneracies in the effects

of different model components on the lepton kinematics are hard to disentangle. The

inclusive channel is, however, the gateway to more exclusive measurements. The work

done creating a high efficiency sample of νµ interactions with low backgrounds will directly

benefit the other channels.
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The Short-Baseline Near Detector

In this chapter, the physics goals driving the SBN programme and SBND will be covered

in Section 3.1. A description of the design and operation of the BNB will be given in

Section 3.2 and a detailed overview of the three main detector subsystems that form

SBND will be given in Section 3.3.

3.1 Physics goals

SBND will be the near detector of the three LArTPCs that make up the SBN programme

[11] in the BNB [105] at FNAL. SBND will have an active mass of 112 tons and be

located at a baseline of 110 m from the beam target. The 476 ton ICARUS detector

[126] is currently being installed as the far detector at a baseline of 600 m. Data from

MicroBooNE [124], with an active mass of 87 tons and a baseline of 470 m, which has been

operational since 2015, will also used for SBN oscillation analyses. The relative positions

of the three detectors and the beam target can be seen in Figure 3.1.

3.1.1 Sterile neutrinos

The primary goal of the SBN programme is to definitively confirm or refute the excess

of low energy electron neutrino-like interactions observed at LSND [52] and MiniBooNE
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Figure 3.1: The relative positions of the three SBN detectors at FNAL. Image credit:
FNAL creative services.

[53]. If the excess is confirmed, the LArTPC technology will be able to determine the

nature of the excess. The most recent low energy excess measurements from MiniBooNE

can be seen in Figure 3.2 and the significance of these results combined with the LSND

data is over 6σ. The lack of particle track reconstruction resolution in either detector

means that the observed low energy showers cannot be attributed to an electron from a

νe CC interaction or a photon from some previously unknown background process.

The spatial resolution of a LArTPC allows a measurement of the energy loss at the

start of the shower, with photon showers having twice the energy loss due to the electron

positron pair created. The MicroBooNE data alone should be sufficient for determining if

the excess can be attributed to electrons or photons, but cannot assign it to an oscillation

process without a near detector. MicroBooNE is expected to present its low energy excess

results by the end of 2020.

The most popular theoretical explanation for the excess is eV-scale sterile neutrinos [56],

as described in Section 2.2.3. The SBN programme, with both near and far detectors will

be able to attribute an excess to either neutrino oscillations or an unaccounted for or new

physical process. If no excess is observed, SBN will be able to rule out almost all of the

allowed sterile neutrino phase space, as shown in Figure 3.3 [11].
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Figure 3.2: The excess of low energy electron neutrino-like events observed by the
MiniBooNE experiment. Figure from [53].
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Figure 3.3: The sensitivity of the SBN program to eV-scale sterile neutrinos in the
electron neutrino appearance channel. Sensitivity contours from [11] with an updated
global fit. Figure credit: D. Schmitz.
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3.1.2 Neutrino-argon cross sections

The target mass and proximity to the origin of the beam means that between 5 and 7

million neutrinos will interact in SBND over the course of three years with the beam

delivering 6.6×1020 Protons On Target (POT). As a result, SBND will be able to pub-

lish neutrino-argon cross sections with low statistical uncertainty allowing for differential

measurements in two or three kinematic variables. The data will be an invaluable test

of neutrino generators and be vital for reducing cross section uncertainties for the future

DUNE experiment.

The large number of interactions also makes the search for rare cross section channels,

such as kaon production and neutrino-electron scattering, possible, as shown in Table

3.1. Rare channels are often highly sensitive to BSM effects, and there is a great deal of

interest from the theoretical particle physics community in using SBND for BSM searches

[5].

3.1.3 Detector technology research and development

Despite first being proposed in 1977 [8], the LArTPC remains a fairly novel technology and

many aspects of the detector design and operational principles are still being optimised.

With much of the DUNE detector design being finalised [127] and millions of pounds

sterling in funding already being allocated, it is critical to ensure the long term stable

running of key detector components in realistic operating conditions. This was one of

the primary motivators for the protoDUNE experiment [128], and SBND will also play

an important role in this as it shares the same membrane cryostat, front-end electronics,

cathode design, and light detection systems.

3.2 The Booster Neutrino Beam

The neutrino beam is as much of an important component of accelerator based experi-

ments as the detector itself. The BNB [105] provides a source of primarily muon neutri-
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Table 3.1: The expected neutrino interaction rates in SBND after approximately three
years of running, predicted using the G17 01b tune of the GENIE neutrino generator [91].
Table credit: R. Jones.

Hadronic
Final State

GENIE (G17 01b)
prediction for

6.6 × 1020 POT
(≈ 3 years)

Charged Current
νµ Inclusive 5,389,168
→ 0π 3,814,198
−→ 0p 27,269
−→ 1p 1,261,730
−→ 2p 1,075,803
−→≥ 3p 1,449,394
→ 1π+ +X 942,555
→ 1π− +X 38,012
→ 1π0 +X 406,555
→ 2π +X 145,336
→≥ 3π +X 42,510
→ K+K− +X 521
→ K0K̄0 +X 582
→ Σ++

c +X 294
→ Σ+

c +X 98
→ Λ+

c +X 672
νe Inclusive ≈ 36,000

Neutral Current
νµ Inclusive 2,170,990
→ 0π 1,595,488
→ 1π± +X 231,741
→≥ 2π± +X 343,760
→ e(−) 374
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nos to the SBN detectors. Negative hydrogen ions are accelerated to a kinetic energy of

400 MeV using a radio frequency quadrupole injector and two linear accelerators. The

electrons are stripped by a carbon foil and the protons are delivered to the 474 m circum-

ference Booster synchrotron ring where they are accelerated up to 8 GeV [105]. The ring

is able to store 84 bunches of protons at one time but only 81 are filled. The bunches

contain approximately 6.2×1010 protons and are 2 ns wide and 19 ns apart when they are

delivered from the ring to the target hall. The delivery of all 81 buckets, 5×1012 protons

over 1.6 µs, is called a spill [105]. The spills are delivered at a maximum rate of 5 Hz.

Quadrupole and dipole magnets are used to focus the beam onto a beryllium target with

a 0.51 cm radius [105]. Beryllium is used as a target because it has thermal properties

that make air cooling suitable and low levels of residual radiation. Protons interact with

the beryllium atoms and produce a large number of hadrons, mainly pions and a small

proportion of kaons [105]. The charged hadrons are then focused with a pulsed toroidal

electromagnet, known as a horn, which bends the paths of charged particles towards

the original beam direction. The flow of current can be reversed to focus positively or

negatively charged particles and generate a primarily neutrino or antineutrino beam.

The BNB will run in neutrino mode for the duration of SBND operations meaning that

π+ and K+ are focussed by the horn. There is a 45 meter long cylindrical decay region

filled with air downstream from the horn to allow the hadrons to decay into neutrinos. π+

decays via π+ → µ+ + νµ with a branching ratio of 99.99% [45, 129] and K+ decays via

K+ → µ+ + νµ with a branching ratio of 63.56% [45, 130]. At the end of the decay region

is a beam stop made of concrete and steel designed to absorb muons produced in hadron

decays. A diagram of the composition of a general neutrino beam is shown in Figure 3.4.

When the BNB is running in neutrino mode the majority of the beam will be composed

of νµ from π+ decay. There will also be ν̄µ present from π− that were not removed by the

horn and νe from µ+ → e+ + νe + ν̄µ decays. Other pion, kaon and muon decays are also

possible, with some also producing ν̄e.
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Figure 3.4: The steps required to create a beam of neutrinos from a high energy beam
of protons. Image credit: FNAL creative services, modified.

3.2.1 Beam monitoring and flux prediction

The number of protons per beam pulse is determined by two toroids that measure the

current of the beam [105]. The position, width and time of the proton spills are also

measured. The two measurements of proton flux from the toroids agree to within 2% and

the measurement of the width of the beam has a standard deviation of 0.1 mm [105].

To predict the neutrino flux, pion production cross sections from the HARP [131] and

BNL E910 [132] experiments and kaon production cross sections from SciBooNE [133]

and global fits [134] were used to parametrise the hadron production processes. Geant4

[135] was used to simulate the BNB beamline, p-Be interactions, propagation of particles

and the decays into neutrinos [105]. The resultant flux predictions for different neutrino

species at SBND are shown in Figure 3.5.

The generation of a neutrino beam is a very complicated process and there are several

sources of systematic uncertainties which contribute to the uncertainty on the neutrino

flux. The dominant source of uncertainty for each neutrino species is on the hadron

production in p-Be interactions, as can be seen in Table 3.2. The uncertainties in the rate

of p-Be and meson interactions, the distributions of the magnetic field within the horn,

the exact locations of beamline components and the POT counting also contribute [136].

A more detailed description of how the uncertainties in the flux propagate to cross section

measurements is given in Section 7.4.
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Figure 3.5: The expected electron and muon (anti)neutrino flux from the BNB at SBND.

Table 3.2: BNB flux systematic uncertainties for all relevant neutrino species as calcu-
lated by the MicroBooNE collaboration [136]. The uncertainties are expected to be similar
but not exactly the same for SBND due to slight differences in the flux seen by the two
detectors. The pion production uncertainties are calculated from thin target HARP data
[131], there is available data from a thicker target which may reduce these uncertainties
[137]. Table reproduced from [136].

Systematic νµ/% νe/% ν̄µ/% ν̄e/%
π+ production 11.7 1.0 10.7 0.03
π− production 0.0 11.6 0.0 3.0
K+ production 0.2 0.1 2.0 0.1
K− production 0.0 0.4 0.0 3.0
K0
L production 0.0 0.3 2.3 21.4

Proton delivery 2.0 2.0 2.0 2.0
Other 3.9 6.6 3.2 5.3
Total 12.5 13.5 11.7 22.6
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Figure 3.6: The SBND building complex. The BNB is shown as an orange dashed line
coming from the right of the image. The concrete overburden will sit between the top of
the detector, in yellow, and ground level. Image credit: FNAL creative services.

3.3 The SBND subsystems

SBND will be located in a building 110 m from the beryllium target and will have a small

concrete overburden, shown in Figure 3.6. An exploded view of the detector subsystems

is shown in Figure 3.7. The core of the detector will be a modular LArTPC with a

central Cathode Plane Assembly (CPA) and two drift regions. The CPA will be held at a

constant negative voltage and a field cage around the Time Projection Chamber (TPC)

will maintain a constant electric field of 500 V/cm. Charged particles passing through

the liquid argon will ionise argon atoms and these ionisation electrons will be drifted in

the electric field. At each side of the detector will be an Anode Plane Assembly (APA)

instrumented with wire planes for detecting the drifted charge.

There will be a PDS behind each wire plane that will be used for triggering on in-

teractions in time with the beam spill and the association of detected charge with the

true interaction time. The TPC and PDS will be housed in a membrane cryostat which

will maintain a liquid argon temperature of 87 K and recirculate and purify the argon

at a constant rate. The cryostat will then be enclosed by seven scintillator based CRTs

designed to tag the position and time of cosmic ray muons entering the detector.
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Figure 3.7: The SBND subsystems. The TPC sits inside the PDS which is hung from the
lid of the membrane cryostat. The outside of the cryostat is surrounded by a number of
CRTs. TPC diagram from [11], PDS diagram created by J. Boissevain, cryostat diagram
created by M. Nessi and CRT diagram created by I. Kreslo.

3.3.1 Charged particles in liquid argon

The target and detector medium of SBND is liquid argon, chosen because of its density,

electron transport and scintillation properties. The high density, 1.396 g/cm3 at 87 K

[138], increases the number of potential target nucleons per unit volume and hence the

neutrino interaction probability. There are approximately 2.1×1022 argon atoms per cm3,

corresponding to 3.8×1023 protons and 4.6×1023 neutrons for argon-40, which makes up

99.6% of naturally occurring argon [138].

When a neutrino interacts with an argon atom, charged particles will be produced

in most cases. Charged particles ionise argon atoms along their path, with an average

ionisation energy of approximately 23.6 eV at 500 V/cm [139, 140]. In the presence of an

electric field some proportion of the ionisation electrons can be drifted before recombining

with the argon ions.

The mean energy loss of of relativistic charged particles in liquid argon is well described

by the Bethe formula [141], shown in Figure 3.8. Given that the mean energy loss of

a Minimum Ionising Particle (MIP) is approximately 2.1 MeV/cm [141], around 9×104

ionisation electrons will be produced per cm. Fluctuations in the energy loss can be

described with a Landau-Vavilov distribution [142] which gives a most probable energy

loss of around 1.8 MeV/cm for a 5 GeV muon with the inclusion of a density effect [143].

- 44 -



Chapter 3. The Short-Baseline Near Detector

Figure 3.8: Energy loss of relativistic charged (non-showering) particles in liquid argon
as a function of kinetic energy. Figure from [144].

The most probable energy loss for minimally ionising muons is well defined and hence it

is an important calibration tool.

A proportion of the ionisation electrons will immediately recombine with argon ions

even in the presence of a strong electric field. The recombination factor, Rc, is defined as

Rc =
dQ/dx

dE/dx
(3.1)

where dE/dx is the energy loss by the particle per unit track length and dQ/dx is the

charge collected by the wire planes per unit length. The dependence of recombination

on dE/dx can be seen in Figure 3.9. This recombination factor must be corrected for in

order to make accurate calorimetric measurements.

As argon is a noble gas, electrons are able to travel long distances without interacting

with the argon atoms. At a field of 500 V/cm and temperature of 87 K the electron drift

velocity is 0.165 cm/µs and the longitudinal and transverse coefficients of diffusion are

6.82 cm2/s and 13.16 cm2/s [146].

The massive argon ions will also drift with a velocity of approximately 8 mm/s [147]. If

there is a high rate of charged particles in the detector and the drift distance is long or

the electric field is low, this can lead to a build up of charge, referred to as space charge

[147]. Space charge can distort the electric field and hence passage of ionisation electrons
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Figure 3.9: The dependence of the ionisation electron recombination factor on the energy
loss of a charged particle traversing liquid argon for a number of different models. Figure
from [145].

in the detector.

There will also be a decrease in the number of electrons proportional to the distance

travelled due to electronegative impurities, such as O2, H2O and CO2, in the argon [148].

This is measured in terms of the electron lifetime, the time for the number of electrons

to decrease by 1/exp.

Argon scintillates when charged particles pass through it, producing Vacuum Ultra-

Violet (VUV) light with a peak wavelength of 128 nm [149], shown in Figure 3.10. The

energy required to produce a scintillation photon is approximately 19.5 eV at 500 V/cm

[150]. There is a fast component at 6 ns and a slow component between 1100 and 1600

ns [149].

There are tensions between recent calculations and measurements of the Rayleigh scat-

tering length for 128 nm light in liquid argon [151, 152], with values between 55 and > 110

cm reported, but any value within this range means that liquid argon is very transparent

to its own scintillation light. These tensions would however need to be resolved in order

to use the scintillation light to make calorimetric measurements.
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Figure 3.10: The VUV→ UV spectrum of liquid argon (black) and gaseous argon (red)
with a clear emission peak at 128 nm. Figure from [149].

3.3.2 The time projection chamber

The principle of operation of the TPC is shown in Figure 3.11. At the centre of the TPC is

the CPA constructed of two joined frames each containing 8 panels of stainless steel mesh.

One of the frames will be attached to a high voltage feedthrough capable of delivering 100

kV. Each mesh panel will also house a TetraPhenyl Butadiene (TPB) coated reflecting

foil, the TPB shifts the VUV scintillation light into the visible spectrum where photon

detectors such as Photomultiplier Tubes (PMTs) and Silicon Photomuiltipliers (SiPMs)

are sensitive.

There will be a drift distance of 2 m either side of the CPA, with a field cage around the

outside of the TPC. The field cage will consist of roll formed stainless steel strips wrapped

around the TPC perpendicular to the drift direction and a resistive divider network will

be used to drop the voltage by about 3 kV per strip between the CPA and APA. The

field cage will ensure that the electric field is uniform so that the drift direction of the

electrons will be perpendicular to the APA and the distortion of tracks is minimised.

Each APA is formed of two 2.5 × 4 m stainless steel frames instrumented with three

planes of 150 µm copper beryllium wires. The closest plane to the CPA, the U plane, will

be at +60 degrees to the vertical axis and will be held at -200 V, the second plane, V, will

be at -60 degrees and will be unbiased. The third, Y, plane will be parallel to the vertical

- 47 -



Chapter 3. The Short-Baseline Near Detector

Figure 3.11: A diagram of the SBND TPC. The z direction is defined along the path of
the neutrino beam, the y direction points upwards and the x direction is along the electron
drift direction that forms a Cartesian coordinate system. The center of the coordinate
system is in the middle of the cathode on the front face of the detector such that the
detector spans from 0 to 500 cm in z and -200 to 200 cm in both x and y.

axis and will be held at 430 V. The wire orientations are shown in Figure 3.12. Plastic

combs at intervals along the APA are used to keep wires in place and prevent sagging or

breakages.

The two frames of each APA will be joined together and wires, both in the U and V

planes, crossing the boundary will be electrically connected together to form a single

effective readout channel. The wires for all three planes are 3 mm apart with a 3 mm

gap between the planes. There are 1664 Y channels and 1984 channels for both the U

and V planes for each APA, giving a total of 11,264 TPC channels for the whole detector.

Images of the APA frames before and after coupling are shown in Figure 3.13.

The U and V planes are referred to as induction planes because the signals they detect

will be from the induced charge of electrons passing by them, as shown in Figure 3.14.

The Y plane is referred to as the collection plane as it will collect the ionisation electrons

to form a signal.

The signals from the readout channels will be shaped, amplified and digitised by front

end electronics inside the cryostat. 128 channels are read out by one Front End Mother-
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Figure 3.12: The layout of the three wire planes for two joined APA frames as seen
from inside the detector. Figure from [153].

Board (FEMB) which holds 8 Application Specific Integrated Circuits (ASICs), each one

providing gain and shaping to 16 channels to provide an optimal signal-to-noise ratio. The

digitisation will then be performed by 128 single channel Analogue-to-Digital Converters

(ADCs), which sample at a frequency of 2 MHz and have a resolution of 12 bits. The 128

channels are multiplexed by a cryogenic Field Programmable Gate Array (FPGA) which

also re-organises the data.

The digitised signals will then be sent to a warm interface board containing an FPGA

which multiplexes multiple FEMBs and performs lossless compression. The data will then

be sent out over a fibre optic cable to the Data Aquisition (DAQ) system which will decide

whether to write the data to magnetic tape based on the available trigger information.

The data will be split into readout windows which correspond to the length of time it

would take for charge to drift from the cathode to the wires, ∼1.25 ms. In order to fully

reconstruct sources of background that may have crossed the TPC before or after the

trigger, one readout window on either side of the triggered window will also be saved.
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(a) (b)

(c) (d)

Figure 3.13: Images of the APA frames. (a) A full APA plane, corresponding to a
quarter of the TPC readout channels. (b) A close-up of the electrical jumper boards. (c)
Two planes joined with mechanical fastenings on the metal frames. (b) Electrical cables
between the jumper boards on the side of the frame. The blue structure underneath
the APA frames is an alignment fixture that allows for small positional adjustments in
three dimensions before the mechanical coupling. Figure credit: (a), (b) Fermilab media
services, (c), (d) N. McConkey.
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Figure 3.14: Simulated wire plane response to an interaction in the TPC. The collection
plane, Y, observes a Gaussian-like peak in response to drifted ionisation electrons. The
induction planes, U and V, observe a bipolar pulse as the electrons drift towards and then
away from the wires. The first peak for the U wires is spread out as the plane is not
shielded.

3.3.3 The photon detection system

The decision whether or not to trigger on an event will be based primarily off information

from the PDS as the signal from scintillation light is much faster than from ionisation

electrons. A timing resolution of a few 100 ns is required to reject background events that

occur outside of the beam spill, and a resolution of 1-2 ns would be needed to utilise the

bucket structure of the spill [105].

The area behind both wire planes will be instrumented with 120 8-inch Hamamatsu

PMTs with 1 ns timing resolution and 192 ARAPUCAs [154], as shown in Figure 3.15.

96 of the PMTs will be coated with TPB and the remaining 24, in the center of each

module, will be uncoated. The uncoated PMTs will only be sensitive to scintillation light

reflected off the cathode allowing for a better estimation of the position of the event in

the drift direction.

The ARAPUCA is a novel light detector system being developed for DUNE, it works

by trapping photons with a highly reflective inner surface and detecting them with a
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Figure 3.15: An exploded view of one half of the SBND PDS, the other side has exactly
the same layout. The PDS is split up into modular boxes holding 5 PMT and 8 ARA-
PUCAs. Figure components from J. Boissevain (PDS layout and box) and A. Machado
(ARAPUCA).

small number of SiPMs relative to its total area [154]. The photons are trapped using a

dichroic filter sandwiched between two wavelength shifters, the outer shifter makes the

filter transparent to the photon and the inner shifter makes the photon reflect off the filter.

The use of PMTs is established in the field of high energy particle physics but would be

infeasible in DUNE due to the small space between APAs. This is the motivation for

developing and testing SiPM based light detectors such as the ARAPUCA in SBND.

Signals from the PMTs will be read out and digitised by commercial front end electronics

boards at 500 MHz and 14 bit ADC resolution, providing a dynamic range of 512 Photo-

Electrons (PE). The front end electronics for the ARAPUCAs were initially designed for

Mu2e [155], they have a clock speed of 80 MHz and 12 bit ADC resolution. Both the TPC

and PDS will be inside a membrane cryostat capable of maintaining a greater than 3 ms

electron lifetime, equivalent to 100 parts-per-trillion O2, a less than 2 parts-per-million

N2 contamination, and a temperature of 87 K.

3.3.4 The cosmic ray tagger

As SBND will be on the surface and will only have a 1 m concrete overburden it will be

exposed to a 3-4 kHz flux of charged particles, mostly muons, from cosmic ray showers

in the atmosphere. The frequency of cosmic ray muons crossing the detector is high
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Figure 3.16: The CRT system surrounding the SBND TPC with the main components
and reconstructed objects labelled. There are seven CRT taggers, one on each face with
an extra tagger on top to be able to measure the trajectory of particles which stop in the
CRT volume. An exploded view of one of the plastic scintillator strips that make up a
module is shown on the right.

relative to the drift velocity of the ionisation electrons and therefore they pose a significant

background to all studies. Matching objects reconstructed in the TPC with flashes of light

in the PDS does not have very precise position resolution and so SBND will be equipped

with a suite of CRTs [156] providing nearly complete coverage of the TPC, as can be seen

in Figure 3.16.

The CRT will use plastic scintillator to detect charged particles through the conversion

of their energy depositions to scintillation photons. Strips of scintillator 11.2 cm wide

(5.95 cm for the bottom tagger), 1 cm thick and between 1.8 and 4.5 m long are fitted

with wavelength shifting optical fibres down both edges as can be seen in Figure 3.16. 16

strips are laid edge to edge to form a module with strips of mylar tape in between for

optical isolation. The ends of the optical fibres on each strip are coupled to SiPMs which

are read out by an FEMB on the module.

Arrays of 2 × 4 or 2 × 5 modules are placed perpendicular to each other to form a tagger
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with two dimensional position resolution. There will be one tagger covering each side and

the bottom of the TPC and two in a telescopic array on the top to tag the trajectories

of stopping particles. There will be areas with one dimensional or no coverage on the

bottom due to the cryostat support structure and 19% of the back face has no coverage

due to space required for cryogenic equipment.

When both SiPMs reading out from the same strip are above a charge threshold the

readout will be triggered in areas with 1D coverage. For areas with 2D coverage, another

strip above threshold in a perpendicular module within 150 ns of the first is required to

trigger the readout. The analogue signal will then be amplified, shaped and digitised

with a timestamp resolution of 1 ns. The clocks of the three detector subsystems will be

synchronised with a trigger that is sent every time a bunch of protons is incident on the

target.

- 54 -



Chapter 4

Construction and calibration of the

detector

SBND is currently being constructed at FNAL, this chapter details the testing and cali-

bration performed to ensure the optimal detector performance and minimise the detector

related systematic uncertainties. In the context of charged current νµ cross section mea-

surements, the accurate reconstruction of the kinematics of the primary muon track is

paramount. GeV-scale muons travel a long distance in liquid argon and so the detec-

tor response needs to be calibrated and unbiased across the entire volume. Section 4.1

describes the procedure used to test the continuity of all of the wire readout channels.

Section 4.2 covers the expected performance of tools developed to calibrate the detector

using through-going muons.

4.1 TPC wire plane readout tests

To measure the topology and momentum of long tracks it is important that all of the wire

readout channels are functioning correctly and are continuous along their entire length

across the detector. This particularly important for wires in the U and V planes as many

are connected across two APA frames.
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4.1.1 Electrical tension tests

All of the wires should be at a tension of around 5 N at room temperature to ensure that

they do not sag or break under the forces induced by installation and cryogenic cooling.

If a wire is not under sufficient tension it may distort reconstructed tracks. If a wire is

under too much tension there is a risk that it may break, if a wire breaks once it is sealed

inside the cryostat it has the potential to short any nearby wires that it touches. This

scenario could result in a large unresponsive region in the detector which would have a

significant impact on the physics sensitivity.

It is critical to measure the tension of every wire at different stages of installation to

ensure that the tensions remain near the nominal value. The method commonly used in

LArTPCs is to reflect a laser beam off a wire onto a photodiode and then mechanically

disturb the wire. A Fourier transform of the photodiode signal can be used measure the

fundamental resonant frequency, fr, which is related to the tension, T , by

T = 4mL2f 2
r (4.1)

where m is the mass per unit length of the wire and L is the length [124]. This process

requires the alignment of the laser system for each wire and at later stages of installation

the wires become increasingly inaccessible. This motivated the development of a method

that can utilise the electrical connections of the wires.

A number of electrical tension measurements have been described before [157–159], but

never in the context of LArTPCs. To investigate whether an electrical tension measure-

ment would be appropriate for up to 4 m long wires in SBND, the method described

in [159] was used as a starting point and the apparatus was adapted into the schematic

shown in Figure 4.1. The wire under study was held at a constant high voltage with an

adjacent capacitively coupled wire with an alternating current on it. A frequency sweep

of the alternating current was performed until the resonant frequency was found.

In the case of SBND, the wires are made of a copper beryllium alloy and have a diameter

of 0.15 mm and a mass per unit length of 1.45×10−4 kg/m. All of the wires in the Y
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Figure 4.1: Circuit diagram for the electrical wire tension measurement tests. A positive
high voltage was input into one wire and a sine wave in to an adjacent wire, an oscilloscope
measured the induced current in the high voltage wire.

plane are 4 m long. As each APA is formed of two frames, the U and V wires only extend

across one of the frames with a maximum length of 2.9 m for wires connected to the long

sides of the frame. As the U and V wires are at ± 60 degrees to the Y wires, their length

decreases by 6.93 mm between adjacent wires attached to both the long and short sides

of the frame down to the shortest wires of the order of a few cm. The dependence of

the fundamental resonant frequency on the length of copper beryllium wire at nominal

tension, from Equation 4.1, is shown in Figure 4.2.

The system of two adjacent wires acts as a capacitor with capacitance per unit length,

C0, given by

C0 =
πε

ln d−r
r

(4.2)

where r is wire radius, d is the distance between the wires and ε is the permittivity. When

the frequency of the input alternating current reaches the resonant frequency of one of

the wires it will oscillate. If the oscillations are modelled by damped, driven harmonic

motion the capacitance can be written as

C(t) = C0(1 + a(f) sin(ft+ φ(f))) (4.3)
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(a) (b)

Figure 4.2: (a) The dependence of the fundamental resonant frequency on length for a
wire of the type used by SBND at nominal tension of 5 N. (b) The percentage change of
the frequency between adjacent U and V wires as a function of their length.

where f is the frequency, t is time, a(f) is the amplitude of oscillation and φ(f) is the

phase.

The amplitude is given by

a(f) =
f 2
r a0√

(f 2
r − f 2)2 + β2f 2

(4.4)

where β is the damping factor, fr is the resonant frequency and a0 is a constant to be

determined. The phase is given by

φ(f) = arctan

(
2βf

f 2
r − f 2

)
. (4.5)

The induced current in the high voltage wire in this ideal case is then predicted to be

I(t) =
dq(t)

dt
= C0v0f cos(ft)− C0V0a(f)f cos(ft+ φ(f)) +O (v0a) (4.6)

where v0 is the peak value of the AC input and V0 is the value of the high voltage DC.

An automated procedure for scanning through frequencies and recording the current

amplitude was developed using the instrument control and data acquisition software Lab-

VIEW [160]. The system was tested on both 0.5 m and 4 m long wires under a range
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(a) 0.5 m frame (b) 4 m frame

Figure 4.3: Images of the electrical wire tension set-up showing both frames used.

of different tensions on a specially designed frame which can be seen in Figure 4.3. An

example measurement of 4 m wires with a fit of the theoretical prediction is shown in

Figure 4.4.

It was found that the measured tension of the 0.5 m wires was stable under both changes

in the speed of the frequency sweep and the value of the high voltage current as shown

in Figure 4.5. The 4 m long wires tended to produce large oscillations and were highly

sensitive to external backgrounds, such as the mains voltage. The background was later

reduced by using another wire as an antenna and subtracting from the signal [12]. The

large oscillations were mitigated by reducing the high voltage.

After this initial work, the method was further improved by other collaborators to use a

system of three wires. The central wire was held at 0 V and the wires on either side held

at VAC±VDC in order to reduce the DC voltage required to the normal operating voltages

of LArTPC wire planes. Further testing of this method was performed as described in

[12]. This included a detailed study of the relationship between the AC and DC voltages

and the performance of the method at cryogenic temperatures.

It was concluded that the resolution of this modified method at VAC = 40 V and VDC =

150 V was approximately 3% for wires with lengths between 0.75 and 3 m at a tension of

5 N, as shown in Figure 4.6a, and the resolution remained below 5% down to 50 cm [12].

It was also demonstrated, see Figure 4.6b, that the measurements are possible at liquid
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Figure 4.4: The measured current amplitude for two 4 m long wires held at tensions of
4.90 N and 2.94 N. The pickup from the mains electrical supply can be seen at 25 Hz. The
theoretical prediction was fit to data, shown in red, to obtain the resonant frequencies.
Deviations due to large oscillations and the 25 Hz mains frequency can be observed. The
error bars signify the standard deviations of the measurements and do not encapsulate
systematic uncertainties.

Figure 4.5: The dependence of measured resonance frequencies on frequency sweep
speed and high voltage value.
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(a) (b)

Figure 4.6: (a) The fit to the bias between the true tension and the measured tension
at VAC = 40 V and VDC = 150 V for multiple measurements of wires between 0.75 and
3 m at 5 N. (b) The measured tension as a function of temperature. Figures from [12].

argon temperatures [12]. This method would be suitable for testing the tension after the

detector is installed but would require the readout boards and electronics to be modified

to allow the input of an alternating current. This method will not be used in SBND as

the design of the readout boards has been finalised, but it could be incorporated into the

DUNE design.

4.1.2 Wire continuity tests

The two frames of the APA must be joined together to form the wire readout of the

TPC. The U and V wires that are soldered to boards on the two long sides of a frame are

connected by jumper cables to effectively form 5.8 m long wires spanning both frames. It

is vital to ensure that there is a continuous electrical connection across this gap and to

test for any wire breakages.

The standard technique for testing continuity is to measure the resistance between the

points where a wire is soldered to the boards. However, in the case of SBND where there

are three planes of wires, only the solder pads for the top plane are accessible. However,

the readout channels for all planes are accessible by design, and so a method for testing

the continuity using only the readout channel input was developed. There is a capacitor
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Figure 4.7: Principle of time domain reflectometry in the context of measuring wire
continuity. The time of the reflected input pulse should be proportional to the length of
the wire. The far ends of the wires have no other electrical connections resulting in the
ends being the main point of reflection.

between the readout channels and the wires and so a changing voltage is required to

measure the continuity, hence the technique of time domain reflectometry was used [161].

A function generator was connected to the readout channel and sent a continuous series

of fast pulses through the electronics and along the wires, the reflected pulses were then

measured with an oscilloscope. The principle of differentiating between wires with and

without a functional jumper connection is illustrated in Figure 4.7. The time and shape

of the reflected pulse depend on the length and impedance of the wire. By comparing the

oscilloscope traces to each other and to a reference trace of an electronics board with no

connected wire it was possible to quickly determine if there were any defects.

In order to match the 50 Ω impedance of the pulse generator a transmission line was

created by resistively coupling the two neighbouring wires to ground, increasing their

capacitance to the signal wire. A switch, shown in Figure 4.8, was developed to improve

the time taken to test multiple wires by utilising all four oscilloscope channels and the 16

pin readout connections on specially designed test boards. This allowed all 16 channels to

be tested in a few seconds by turning the switch through its four positions while observing

the oscilloscope.

A diagram of the full system is shown in Figure 4.9 and an photograph of the system in

use is shown in Figure 4.10. A splitter box was used to generate four identical 12 ns pulses
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Figure 4.8: Mapping of the 4 switch positions to 16 APA wires. Four 3P4T (3 pole 4
position) switches are stacked, one pole on each switch is the signal, which is connected
to oscilloscope channel, and the other two poles are grounded to the reference ground
of the pulse generator. The bottom right diagram shows the mapping for one of the
3P4T switches, at each of the positions the scope and ground arrows move with the
dial, representing electrical connections to the labelled wires. The bottom left diagram
shows the stacking of the four switches and the APA wires that they are connected to,
following the same scheme as the bottom right diagram. At the top of the diagram the
first two positions for all of the APA wires are shown, as the position is incremented each
connection moves one to the right. Moving through all four positions means that each of
the 16 wires will be connected to an oscilloscope channel and measured exactly once with
the two adjacent channels connected to ground.
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Figure 4.9: A block diagram of the electrical continuity test set-up where just three of
the 16 connected channels are shown. Figure credit: N. McConkey.

with 200 mV amplitudes. The pulses were input into every fourth wire and the input and

reflected pulses were read out by separate oscilloscope channels. The two channels either

side were resistively coupled to ground unless the first or last channel was being read out,

in which case only one of the neighbouring channels was coupled. The input pulse was

visible in the oscilloscope trace and provided a trigger.

The reflected pulse has a complicated structure, as seen in Figure 4.11, because parts

of the pulse are reflected at every electrical interface. As the electronics for each channel

are identical, the measured pulse shape for continuous wires were also nearly identical

and it was easy to distinguish faulty channels by eye. It is worth noting that most of the

complicated structure is from the input of the electrical pulse through the test setup and

it is not expected that the measured charge deposits will have a similar structure when

the detector is operating. This method was used to confirm the electrical continuity of

all of the SBND wires and represents a significant improvement in the ease and speed of

testing. The method can be used up to the final stages of installation, hopefully ensuring

a continuous and stable readout across the entire detector.
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Figure 4.10: An image of the continuity test in use with the special testing connector
boards shown. Figure credit: N. McConkey.

Figure 4.11: An example oscilloscope trace from the electrical continuity test for wires
on the Y layer with a reference trace of an unconnected wire shown. The high amplitude
input pulse at the start of the trace is used as the trigger for the oscilloscope. Figure
credit: N. McConkey.
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4.2 Calibration

Once the detector is installed and filled with liquid argon it will need to be calibrated

as soon as possible to enable the analysis of the high rate of neutrino interactions. The

required frequency of calibrations will vary from one precise measurement over the lifetime

of the experiment to daily or hourly checks of the performance. There has been a focus

on developing tools that can perform automatic calibrations as soon as the detector is

operational.

There are many different components to be calibrated and physical properties to be

measured. Some of the most important properties for the measurement of long muon

tracks are space charge, electron lifetime and the alignment of the APA frames. Space

charge is the build up of positive ions in the detector, as discussed in Section 3.3.1, and

is not covered in detail here as it was not included in the analysis of this thesis.

The high flux of cosmic ray muons contributes a significant measurement background

but it also provides an excellent tool for performing calibrations as nearly all through-

going muons are MIPs and deposit a known amount of energy per unit track length. The

CRT system can also act as a configurable trigger so samples of through-going muons

with specific topologies can be produced.

4.2.1 Purity

Electronegative impurities reduce the electron attenuation length, called the electron life-

time when expressed in units of time at a constant drift field [148]. It is essential to be

able to monitor the purity of the argon in real time to respond to any incidents which may

endanger the detector. It is also vital to accurately and precisely measure the electron

lifetime in order to produce reliable calorimetric measurements. These two requirements

do not completely overlap and may require different measurement techniques. Three dif-

ferent methods utilising through-going muons were developed and their suitability for

each requirement was investigated.

The methods all rely on the principle of measuring the reduction in observed charge with
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distance from the APA. The energy loss by a MIP can be modelled by a Landau-Vavilov

distributed variable, as discussed in Section 3.3.1. The collected charge will be reduced

by
dQ

dx
=
dQ0

dx
exp(−t/τe) (4.7)

where dQ0/dx is the initial charge loss per unit length, t is the drift time and τe is the

electron lifetime. Measurements of the collected charge per unit length and corresponding

drift times can be used to extract the electron lifetime.

Method 1: Single track maximum likelihood

The first method used a similar technique to the online purity measurements used by the

LArIAT experiment [162]. The location of groups of ionisation electrons from charged

particles on the collection wires, called hits, were found by fitting Gaussian distributions

to the wire waveforms and the charge was calculated by integrating the area under the

waveform. The hits were grouped into track-like objects using reconstruction algorithms

described in Section 5.2.1.

The criteria summarised in Table 4.1 were applied to select straight tracks that passed

through both the APA and CPA as these were likely to be MIPs and their true interaction

time is known. For the selected tracks, the integral of each hit was normalised by the track

pitch to give dQ/dx in electrons per mm (e/mm). A maximum log likelihood estimator

was used to extract τe from each individual track by minimising

− LL = − log

(
pLandau

(
dQMeas/dx− dQMP/dx

σ

))
(4.8)

where pLandau(x) is the Landau probability density distribution [163], dQMeas/dx is the

measured charge loss, dQMP/dx is the most probable charge loss from Equation 4.7 using

the measured drift time and σ is a scale parameter. Multiple tracks were then used to

give an average value for the τe.
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Table 4.1: Selection criteria used to select straight muon tracks that cross the entire
drift distance. The criteria were applied sequentially as shown here. The linear fits were
used to remove hits that deviated from a straight line, either due to the muon not having
enough momentum or δ-rays.

Parameter Selection Criteria
Start time - end time > 1238 µs
Number of wires hit > 230
χ2/ndof after 2 linear fits < 2
Number of hits > 230

Figure 4.12: dQ/dx against the drift(hit) time for multiple anode to cathode crossing
muon tracks with a simulated electron lifetime of 3 ms.

Method 2: Binned multi-track fit

The second method was based on measurements by the ICARUS [148] and ArgoNeuT

[122] experiments. The same simulated sample of through-going muons and selection

criteria as in method 1 were used. The dQ/dx and times of the hits from all of the

selected tracks were collated, as shown in Figure 4.12.

The data were then separated into 20 time slices of equal width, and fit with a Landau-

Gaussian Convolution (LGC). An example of one of these fitted slices is shown in Figure

4.13a. The Landau function approximates the energy loss by the muon and the detector

response is modelled by the Gaussian function. The most probable dQ/dx from the LGC

against the mean drift time was then fit with an exponential function to determine τe as

shown in Figure 4.13b.
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(a) (b)

Figure 4.13: Fitting process for method 2. (a) An LGC fit to hit charges in a 62.5 µs
time window. The fit limits were chosen to avoid most of the δ-ray contribution at ∼ 2×
peak charge. (b) An example exponential fit of the most probable dQ/dx against drift
time for an electron lifetime of 3 ms.

Method 3: Parallel tracks

The third method used muons that cross the detector parallel to the wire planes, like the

example shown in Figure 4.14. These muons will be triggered when they pass through

opposite pairs of CRT scintillator strips. All of the ionisation electrons will arrive in a

short period of time so minimal tracking reconstruction would be required.

Tracks which pass through 10 cm wide strips between 15 and 185 cm from the wire

planes were selected from a sample of simulated muons generated with slight variations

in angle and uniformly in the drift direction. A histogram of the dQ/dx for each CRT

pair was fit with an LGC as shown in Figure 4.15a. The same exponential fit function,

shown in Figure 4.15b, as in method 2 was then used to calculate τe.

Systematic Corrections

The dQ/dx distributions in method 2 were initially observed to deviate from an LGC,

corrections have been applied to Figure 4.13a but an example of the previous distributions

can be seen in Figure 4.16. The deviation was not observed in the distributions for method

3 and so it was hypothesised, as there is little angular variation in the parallel track sample,

that there could be a systematic dependence on the track angle. To test this, muons were
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Figure 4.14: An example of a muon crossing parallel to the wire planes that would be
selected by the CRTs.

(a) (b)

Figure 4.15: Fitting process for method 3. (a) An example of an LGC fit to hit charges
contained within 10 cm wide CRT scintillator strips. (b) An example of an exponential
fit used to extract the lifetime with a simulated electron lifetime of 3 ms.
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Figure 4.16: An example of a convolution fitted to hit charges calculated using the
Gaussian hit finder before charge corrections were applied.

(a) (b)

Figure 4.17: Calculated lifetime as a function of (a) θXZ , varied from 22 to 62 degrees
in steps of 5, and (b) θY Z , varied from 5 to 50 degrees in steps of 5.

generated with fixed directions in the detector with variations in the angle between the

beam and drift directions, θXZ , and the angle between the beam and vertical directions,

θY Z .

Another possible source of systematic deviation was diffusion, this was switched off in

the simulation to isolate any angular dependence. The electron lifetime was set at 10 ms as

the sensitivity to systematic effects increases with lifetime. There was a clear dependence

on θXZ and minimal dependence on θY Z as shown in Figure 4.17.

The change in the calculated loss of charge generated next to the APA, dQ0/dx from

Equation 4.7, with θXZ is shown in Figure 4.18. This suggested that the angle of the

track may affect the hit shape, hence the charge calculated by the Gaussian hit finder.
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Figure 4.18: The value of dQ0/dx calculated from the exponential fit as a function of
angle with and without diffusion. Diffusion was found to have no systematic effects on
the measurements at the levels simulated in SBND.

Figure 4.19: Dependence of the calculated lifetime on θXZ using manual integration of
the hit charge.

Manually integrating the raw charge of hits identified by the Gaussian hit finder removed

the dependence on θXZ , as can be seen in Figure 4.19.

Another possible cause of systematic deviations is the hit finding efficiency at low life-

times. Hit charges can pass below the detection threshold and the most probable value of

the Landau function can be obscured. Any charge distributions that were affected by this

were identified and removed from the results by locating the position of the hit finding

threshold relative to the Landau peak.

Comparison of methods

Samples of 3 GeV muons were simulated with lifetimes ranging between 0.75 and 10.0

ms, covering the range of interest for the requirements. A lifetime around or below 0.75
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(a) (b)

Figure 4.20: (a) The lifetime and (b) the equivalent charge loss across a 2 m drift length
calculated by the three different methods at a range of simulated lifetimes.

ms would indicate an issue with the argon purity that needs to be immediately addressed

and a lifetime above 10 ms represents excellent purity with only small charge corrections

required. The lifetime was calculated for each sample using all three methods, with the

results shown in Figure 4.20a.

For accurate calorimetry, the lifetime needs to be measured and corrected for. An

incorrect measurement of τe could cause significant errors in the reconstructed charge, the

effect of using each method on the corrected charge is shown in Figure 4.20b.

Method 1 benefits from being able to work on the smallest sample sizes and may be

better for monitoring how the purity changes over short periods of time or in different

areas of the detector, for example near the filtration system. The exponential fits in the

method 2 have better χ2/ndof in comparison to method 3 and may give more precise

results for calorimetry.

The cause of the large χ2/ndof values in method 3 is most likely to be that the uncertain-

ties on the most probable charges are related to the numbers of hits in the distributions.

Hit statistics were high but the track statistics were comparatively low, which results in

the hits not being evenly distributed across the drift direction. This can lead to a bias

in the time bins that isn’t observed with method 2. Binning within the CRT pairs could

help to reduce this effect.

Method 3 requires the least amount of track reconstruction and could be used for quick
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and almost online lifetime measurements. The rate of anode to cathode crossing muons

is predicted to be around 300 Hz, based on simulations described in Section 5.1. The rate

of cosmic ray muons triggered by the upstream and downstream CRT taggers which do

not traverse more than 10 cm in the drift direction in the TPC is predicted to be 3 Hz,

so it would be much faster to accumulate the statistics for methods 1 and 2.

4.2.2 Purity measurements in the vertical slice test

There was an opportunity to test the principle of measuring argon purity on real LArTPC

data using the Vertical Slice Test (VST) at FNAL. The construction and operation of the

VST was a large collaborative effort led by M. Betancourt and B. Badgett. I assisted in

the construction and running of the experiment, developed the analysis code framework

with G. Putnam and D. Barker, and created the lifetime measurement software based on

the previous work performed with D. Barker.

The vertical slice test

The VST was designed to test the electronics that would be used in SBND in the much

smaller LArIAT detector [162], with the goal of providing an accurate measurement of

the expected signal to noise ratio. The LArIAT TPC has the dimensions of 47 cm width

(drift) × 40 cm height × 90 cm length with a cathode plane along one side and an anode

plane along the other. The anode plane consisted of three wire planes each containing 240

wires with a 4 mm spacing. The planes were labelled as U, V and Y and were at +60, -60

and 0 degrees to the vertical direction, as in SBND. The U plane, held at -298 V acted

as a shield to the other two planes and was not read out. The V plane was an induction

plane and held at -27 V and the Y plane was the collection plane, held at +340 V.

The cold electronics that will be used in SBND and were tested by the VST are shown

in Figure 4.21. An overview of the electronics is given in Section 3.3.2. Images of the

VST TPC are shown in Figure 4.22.
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Figure 4.21: The SBND electronics readout with a single TPC wire shown. The wire
is represented as a current source and capacitance to ground in the bottom left. Figure
credit: SBND electronics group.
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(a)

(b)

Figure 4.22: Images of the VST TPC (a) with the wire planes facing the camera and
(b) inside the cryostat. Image credit: M. Betancourt.

Purity measurements

An online purity monitor was required to make electron lifetime measurements for the

online data quality monitor and to correct the observed charge for signal-to-noise mea-

surements. The TPC used for the VST was small but still had a high enough flux of

through-going cosmic ray muons to measure the electron lifetime. The flux was not high

enough to rely completely on parallel muons or anode to cathode crossers but external

muon paddles were available to act as a trigger. The size of the TPC meant that it was

rare for there to be more than one cosmic track in each readout window.

The muon paddles were set up to select muons which travel across the drift distance

and along the length of the TPC. The signals from the collection and induction wire

planes were run through a hit finder which identified peaks using a threshold rather

than Gaussian fits and integrated the charge in the same way as the methods described

previously. The produced hits, shown in Figure 4.23 for a single track, were the input to

the lifetime calculation.

As the majority of events contained only one cosmic track, the development of a full

track reconstruction procedure was not necessary. A recursive linear fit was performed

to remove excess hits from δ-rays or noise. In high noise events, such as during filling,
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(a) (b)

Figure 4.23: The output of the raw hit finder for (a) the collection and (b) the induc-
tion planes with initial linear fits performed. A section of the induction plane became
unresponsive during running, as can be seen in (b). A TDC tick is defined as 0.5 µs.

Table 4.2: Selection criteria used to select straight through-going cosmic muon tracks.

Parameter Selection Criteria
Total hits > 60
Collection hits > 40
Induction hits > 20
Final χ2/ndof < 40
Wires crossed > 50
Drift time extent (µs) > 50
Collection/induction track time overlap (%) > 80
Lifetime from exponential fit (ms) < 100

this stage was designed fail and the event would be discarded. Requirements on the total

number of remaining hits, the time and wire extent of the tracks and the time overlap

between the collection and induction tracks were used to ensure that a good lifetime

measurement could be made. The criteria used in this analysis are summarised in Table

4.2. The χ2/ndof returned from the final fit was used to select mostly straight tracks.

An example of a selected track can be seen in Figure 4.24.

For tracks which passed the criteria, the same maximum log likelihood estimator as in

Equation 4.8 was used to extract the lifetime. The estimator was found to perform better

when the high energy tail was not included in the fit. To remove the tail, the collection

hit charge against drift time distribution was fit with an exponential as in Figure 4.25a.

Hit charges too far away from this fit were removed using a Landau fit to a histogram of

hit charge distances from the exponential fit, Figure 4.25b. The resulting hits used in the
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(a) (b)

Figure 4.24: Tracks on the collection (a) and induction (b) planes after selection criteria
and δ-ray removal. Only the selected collection plane hits were used to make lifetime
measurements.

maximum log likelihood estimator are shown in Figure 4.25c.

The purity calculator ran as part of the online monitor enabling the experiment to detect

any large changes in the measured electron lifetime indicating either an issue with the

argon or the stability of the electronics. The measurements taken over the run period

of the VST were collated and averaged over hour long periods to reduce some of the

variation in the measurements, this is shown in Figure 4.26. The measurements appear

to vary consistently over time, tracking changes in the operating conditions of the VST.

This indicates that a similar method would be appropriate for the real time monitoring

of SBND.

4.2.3 APA alignment

Another potential source of bias when measuring muon tracks is a misalignment between

the two APA frames on either side of the detector. There are procedures to ensure that

the two frames are level with each other using a specially designed alignment fixture and

laser surveys. The two frames are initially bolted together and then held in place with

large steel bars at either end. Once aligned and coupled the frames will be lifted several

times before reaching their stationary position inside the TPC and it is possible that they

may become misaligned in this time.
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(a) (b)

(c)

Figure 4.25: (a) Initial exponential fit and (b) landau fit used to remove hits with high
charge values. (c) An example of a selected charge against time distribution used for the
minimisation.

(a) (b)

Figure 4.26: (a) The lifetime measurements for every selected track. (b) The hour
averaged measurements with the changes to the drift field.
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Figure 4.27: The effects of an exaggerated misalignment on tracking through an X
translation and a rotation around the Y axis. The Y axis is into the page.

A misalignment that changes the drift distance relative to the cathode is likely to affect

the track reconstruction as tracks may be split across the APA gap or an artificial kink

may be introduced, which could be misinterpreted as an interaction vertex. However,

it is also due to this effect on the tracking that it should be possible to measure the

misalignment using through-going muon tracks.

Two cases, as illustrated in Figure 4.27, were considered. The first is a translation in

the drift, X, direction which would result in one half of the wire planes being closer to the

cathode than the other and tracks would either be split or have two sharp kinks in them.

The second case is a rotation around the vertical, Y, axis. A rotation is most likely to

occur around this axis as the APAs are joined along the vertical coordinate. A rotation

of this kind would mean that the distance from the wires to the cathode would change

along the beam, Z, coordinate and tracks would have a single kink at the APA join.

Through-going muons parallel to the wire planes would be ideal for measuring any

misalignment. It is possible to configure the CRT system to trigger on this type of event,

as in the purity measurement, and although the predicted rate is low the misalignment

is not expected to change once the TPC is in place and so only requires one precise

measurement. A sample of 3 GeV muons parallel to the wire planes with a perpendicular

offset of between 0 and 30 cm was produced with either translations in X or rotations

around the Y axis. These samples were used to estimate the accuracy and resolution of

measuring a misalignment with muons.

The maximum tolerance for a translation in X given in the SBND specifications is 0.5

mm. The through-going muon tracks were simulated with this translation and recon-
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(a) (b)

Figure 4.28: Measurement of an X translation between two APA frames using through-
going muons parallel to the wire planes. (a) Distribution of X distances between either
side of the APA gap. (b) Dependence of measurement error on the number of muon tracks
used.

structed, with details of the reconstruction given in Section 5.2.1. Two linear fits of the

ZX projection of the tracks on either side of the APA gap were performed. The differences

in X position of the two fits at the gap were calculated and a Gaussian function was fit

to the distribution of X differences over many tracks, as shown in Figure 4.28.

The maximum tolerance, and simulated value, for a rotation around the Y axis is spec-

ified to be 0.12 degrees measured from the normal to the plane and assuming the other

plane is parallel to the cathode. The same method of performing linear fits to tracks on

either side of the APA gap was used, but here the difference in the track angle in the ZX

plane, θZX , was used. The performance of this method is shown in Figure 4.29.

This study was able to demonstrate that it is possible the measure the effects of APA

misalignment at the maximum allowed specification. It would therefore be possible to

measure if the alignment has changed during installation. As the measurement resolution

is very good it is clear that even a small misalignment will affect the tracking and should

be measured and corrected for as soon as possible. This study did not include a simulation

of the electric field distortions due to misalignment which may also affect the tracking.
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(a) (b)

Figure 4.29: Measurement of a rotation around the Y axis between two APA frames
using through-going muons parallel to the wire planes. (a) Distribution of θZX differences
between either side of the APA gap. (b) Dependence of measurement error on the number
of muon tracks used.
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Simulation and reconstruction

In this chapter, the software and techniques used to simulate neutrino and cosmic ray

interactions and the response of SBND to them are described in Section 5.1. An overview

of the algorithms used to reconstruct the interactions in the three detector subsystems is

given in Section 5.2. The performance of the reconstruction relevant to measuring charged

current muon neutrino interactions is evaluated in Section 5.3.

5.1 Simulation

SBND is under construction and not due to take data until 2022, and so simulations are

required to develop reconstruction algorithms and predict sensitivities to physics mea-

surements. All of the simulations were performed within the LArSoft framework [164]

which is in turn built on the art event processing framework [165] and the ROOT data

analysis package [166].

The first step in simulating the experiment is the generation of neutrino interactions.

Predictions of the expected interaction rates are calculated based on the flux of the neu-

trino beam, the location, geometry and composition of the detector and a given cross

section model configuration using a Monte Carlo neutrino generator.
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5.1.1 Neutrino generators

Monte Carlo generators use random numbers to estimate the expected interaction kine-

matic distributions and final state particles according to a cross section model or collection

of models. The cross sections, σ, produced by theoretical models, discussed in Section

2.3, are normally expressed as a function of the momentum transfer and other fundamen-

tal kinematic variables. In order to be compatible with Monte Carlo methods, the cross

sections need to be parametrised in terms of random numbers, x ∈ [0, 1], by performing

changes of variables such that dσ/dx is a continuous function [167].

The value of σ at a randomly generated x can be calculated using the initial state kine-

matics sampled from the flux, discussed in Section 3.2, and nuclear model, discussed in

Section 2.3.2. The event is then selected with a probability of P = σ/σmax where σmax

is the maximum value of dσ/dx. The final state kinematics can be calculated by trans-

forming back to the original basis. This will give final state kinematic distributions that

converge with an increasing number of events to what would have been generated ana-

lytically [167]. This method is beneficial as it can replace complicated multi-dimensional

integrals with sums.

Difficulties arise from the fact that there is currently no cross section model covering

all possible interaction dynamics and energy transfers and no nuclear model covering all

possible nuclear targets. The generators must also propagate the final state particles out

of the nucleus with realistic treatments of FSI, discussed in Section 2.3.4. Therefore,

several different models must be used together. Care must be taken in the transition

regions between models to ensure that the double counting of interactions does not occur,

artificially increasing the generated cross section [59].

Many parameters in the theoretical models are not fully constrained by calculations

or have a degree of uncertainty to them so experimental data are often used to tune the

models [91, 118]. Uncertainties in models covering similar regions of phase space combined

with uncertainties in the flux modelling and incoming neutrino energy often result in hard

to avoid degeneracies making this tuning difficult. This is one of the primary reasons why

more precise data in more exclusive channels are needed.
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Table 5.1: Cross section models used in GENIE v3.0.6 tune G18.10a.02.11a:k250:e1000.
This is a theory driven configuration with parameters tuned to CCQE, CC1π, CC2π, and
CC inclusive cross-section data from bubble chamber experiments [91].

Component Model

Nuclear model Local Fermi gas [82, 83]

Meson exchange currents (MEC) Nieves et al. [82, 83]

Coherent pion production (COH) Berger-Seghal [93]

Quasi-elastic scattering (QE) Nieves et al. [82, 83]

Resonant pion production (RES) Berger-Seghal [92]

Deep inelastic scattering (DIS) Bodek-Yang [94]

Final state interactions (FSI) INTRANUKE hA2018 [91]

Given some of the historical disagreements between experimental neutrino cross section

data, Section 2.4, the large numbers of competing models, Section 2.3, and the number

of generators often with different parametrisations of those models, experimental results

must be presented with minimal dependence on the models used to develop and evaluate

reconstruction. The generator primarily used for neutrino interactions in LArTPCs and

in the bulk of the analysis of this thesis is the GENIE [98] Monte Carlo generator. It is

chosen due to its existing interface with the LArSoft framework and ability to reweight

neutrino interactions according to the uncertainties of physics parameters, this is discussed

further in Section 7.4.

A number of different versions of GENIE using different models and model tunes have

been used to develop reconstruction algorithms in SBND. Here, the performance of the

reconstruction and event selection will be evaluated using GENIE version 3.0.6 with a

theory driven model configuration summarised in Table 5.1. More details on the individual

models can be found in Section 2.3.

5.1.2 Cosmic ray generators

As a surface detector, an accurate prediction of the cosmic ray background is also very

important. The Monte Carlo generator used for simulating cosmic showers in this anal-

ysis was CORSIKA [168]. The generation starts with a position dependent flux of high

energy particles originating from galactic or extra-galactic sources incident on the area
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(a) (b)

Figure 5.1: The momentum and angular distributions of cosmic muons in SBND. Both
distributions are normalised by the total number of cosmic ray muons simulated. θ refers
to the angle to the beam direction and φ is the angle around the beam direction with
φ = 0 defined as being in line with the positive drift direction.

of the Earth’s atmosphere relevant to the detector. Models of nuclear fragmentation and

hadronisation are then used to predict the resulting particle showers [168]. Survival prob-

abilities are used to predict which particles reach the detector [168], the result of this is

usually downward-going muons with a momentum distribution peaking at 1-3 GeV and

a tail extending out to higher momenta.

The accuracy of the model is not as critical as for the neutrino generator because it

is possible to take cosmic ray data when the beam is not delivering neutrinos, called

off-beam, in order to subtract cosmic ray backgrounds. Reconstruction algorithms are,

however, trained on the simulations before the detector is operational and incorrect sim-

ulations could lead to biases that will take time to correct later, especially in the case of

trained machine learning algorithms.

The MicroBooNE experiment, which is located near SBND, found that generating show-

ers using only cosmic ray protons matched their data rates better than using all available

particle types (p, He, N, Mg, Fe) and was thus used in this analysis. The predicted muon

momentum and angular distributions in the SBND TPC are shown in Figure 5.1. The

rate of muons entering the TPC is predicted to be 3.5 kHz with this model configuration.
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5.1.3 Detector simulation

Once the initial interactions have been produced by the generators, the particle types and

momentum four-vectors are input to the Geant4 [135] simulation toolkit. This software

applies the physics described in Section 3.3.1 to propagate the particles through the

different materials that make up the detector. The scattering, decays, showers and other

particle interactions are simulated along with the passage of the ionisation electrons and

scintillation light.

As liquid argon has a low scintillation energy threshold the simulation of light poses

a technical challenge, propagating the large number of photons for every event is too

computationally slow. A common solution to this is to use a lookup table that provides

a probability of detecting a photon based on its initial position [169]. The novel method

currently employed in SBND is to apply Rayleigh scattering corrections to pure geometric

approximations to estimate the number of photons visible to the PDS from interacting

particles.

The final step that brings the simulation to same point as the raw data collected by the

experiment is the detector response. After this stage the same reconstruction algorithms

should be able to be applied to both simulated and real data. For the TPC, the output

of the wire readouts is simulated by convolving an electronics response function with the

electric field response to the drifting electrons [170]. A noise model is then added, taking

into account the chosen gain and shaping time of the electronics [170].

For the PDS, the semi-analytic simulation provides a list of photons and their relative

arrival times for each PMT and ARAPUCA. A quantum efficiency is applied to each

photon, this is different for each type of detector and for reflected and direct light. If a

PE is created, the transit time is then calculated using measurements of the light detectors

and the TPB emission spectrum, if applicable. Digitised waveforms are then constructed

using the measured baselines and single PE responses for each detector, converting from

charge to ADC, and adding effects like saturation. Gaussian noise and dark noise are then

added to the final waveform formed of the response to all detected photons. An overview

of this process is shown in Figure 5.2.
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Figure 5.2: The steps involved in simulating the PDS response. The quantum efficiency
is used to determine if an incoming photon is converted into a photo-electron, the transit
time is calculated and a waveform is created.

The CRTs are external to the TPC and are treated differently as the scintillation light

simulation is only run within the TPC volume. Geant4 determines the positions and

energy deposits of charged particles in each piece of optically isolated plastic scintillator.

The charge depositions, Q, are converted into the expected numbers of PE, NPE, at the

end of the strip instrumented with SiPMs. The attenuation loss is calculated using

NPE =
A

(r −B)2
· Q
Q0

(5.1)

where A and B are measured normalisation and shift parameters, Q0 is the mean deposited

charge loss for MIPs and r is the distance between the charge deposition and the SiPM

end.

The PE sharing between SiPMs, N
0(1)
PE , is modelled as

N
0(1)
PE =

NPE · exp(r0(1)/L)

exp(r0(1)/L) + exp(r1(0)/L)
(5.2)

where r0(1) is the perpendicular distance between the energy deposition and SiPM 0 (or

1) and L is the effective absorption length for transverse response in the scintillator.

Saturation, thresholds and triggering logic are then applied, if the trigger requirements

are met the CRT simulation will output the detected number of PE with a timestamp for

each SiPM.

The form and parameter values for Equations 5.1 and 5.2 were initially determined using
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(a) (b)

Figure 5.3: (a) Simulated NPE distribution in the top CRT tagger tuned to MicroBooNE
data. (b) The dependence on the angle of the incident comic-ray muon track to the tagger.

test stand measurements at the point of production [156]. The same CRT modules are

also already in use by the MicroBooNE detector and the SBND model parameters were

further tuned to their data using the shape of the NPE distribution of modules parallel

with the top of the detector, shown in Figure 5.3.

5.2 Reconstruction

The LArSoft framework is also used for the majority of the reconstruction and analysis

software. The three detector subsystems have different operating principles and hence

different approaches to reconstruction.

5.2.1 The time projection chamber

The LArTPC technology has existed for decades but only a few recent experiments, Micro-

BooNE and protoDUNE, have had to contend with event rates high enough to necessitate

fully automated reconstruction. Unlike collider experiments, neutrino experiments do not

have a single point of interaction that you can build specialised detector components

around. The LArTPC solution to this is to image a large volume of target medium in

three dimensions with mm level position resolution.

The huge volume of topological and calorimetric information combined with the high
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Figure 5.4: An example of all of the true trajectories of particles crossing SBND in a
event composed of a triggered readout window and two windows either side. There is
a single neutrino event highlighted in blue amongst several cosmic ray muon tracks in
yellow. The raw wire waveforms around the neutrino vertex for the three views are also
shown.

flux of cosmic ray muons means the reconstruction of events in LArTPCs is complicated

and several different approaches are under active development. An example of the typical

activity occurring within three readout windows that the reconstruction would have to

contend with is shown in Figure 5.4.

The first stage that is common to all approaches is the reconstruction of ionisation

electron signals on the wires, called hits. The electronic effects are removed from the

signal so that the area under the wire waveform is proportional to the charge. Filtering

is performed to remove the noise, both random noise from the electronics and correlated

noise from other detector components [170]. The charge is then retrieved by deconvolving

the measured signal and the detector response function. Previously, this was performed

in only the time dimension but the need to include the response of the wire to charge

induced in nearby wires has led to the use of deconvolution in two dimensions, time

and wire number [170]. The deconvolution transforms the bipolar induction signals into

waveforms with a more of a Gaussian shape, as shown in Figure 5.5.

The deconvolved signals are then approximated as Gaussian functions to find the time

and charge of the hits. A region of interest is found using a simple threshold and a
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Figure 5.5: Induction and collection plane waveforms with signal processing and hit
finding applied. The Gaussian functions fit to the waveforms are shown in red.

single Gaussian function is fit to the region, if the fit has a χ2/ndof greater than 2000,

two Gaussian functions are then used, this process is repeated until an acceptable fit is

achieved. An example of Gaussian hit finding can also be seen in Figure 5.5.

After hit finding has been performed there are then three different approaches to re-

construction which are commonly used in LArTPCs. The first employs elements of deep

learning for different stages such as hit clustering and particle identification [171]. Convo-

lutional neural networks common to image processing are particularly appropriate as the

output of the TPC is effectively a series of high resolution images. Another method uses

the mathematics of sparse matrices to reconstruct charge depositions directly in three

dimensions [172]. The default method used by SBND and in this analysis employs the

Pandora multi-algorithm approach to pattern recognition [173].

Pandora has two main stages which utilise the difference in topologies between cosmic

ray and neutrino induced interactions. It runs initially assuming that everything is a

cosmic ray muon, removes all of the tracks that can be unambiguously labelled as cosmic

ray muons and then runs again with the assumption that everything remaining is the

result of one or more neutrino interactions [173].

The first step in the Pandora cosmic reconstruction chain is to cluster hits in the two

dimensional wire and time views, taking into account unresponsive channels and other
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Figure 5.6: Two dimensional hit clustering performed by Pandora. The smaller track
is not clustered on the V plane as it is very short in this view but this is corrected when
projecting the planes into three dimensions.

detector effects. An example of this clustering process can be seen in Figure 5.6. Clus-

ters are then matched across the different views to form three dimensional space points

associated to the hits in each plane. This is done by predicting the location of hits in one

view from the clusters on the other two views and finding the 3D point most consistent

with what is observed and the overall smooth trajectory of the track [173]. Any clusters

not part of three dimensional tracks are assumed to be δ-rays. An example of this three

dimensional reconstruction is shown in Figure 5.7.

At this point Pandora tags any tracks which are unambiguously cosmic ray muons and

removes them. All tracks are reconstructed assuming that the charged particles crossed

the detector at the trigger time. If a particle crossed before or after the trigger time, as is

most often the case with cosmic ray muons, the reconstructed track will be shifted either

towards or away from the wire planes in the drift direction. If a track is reconstructed

outside of the TPC that it was detected in it can be tagged as a cosmic. It is also possible

to remove any tracks which can be seen to clearly enter and exit the TPC and any where

it has been possible to tag the true crossing time, the t0, by stitching tracks across the

cathode plane [173]. 85-90% of cosmic ray muons are removed by this process.

The remaining 3D reconstructed space points are then split into candidate neutrino
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Figure 5.7: Three dimensional track reconstruction performed by Pandora. The track
positions of cosmic ray muons are shifted compared to Figure 5.4 as they are reconstructed
assuming they crossed in time with the beam.

interactions, called slices, that appear to originate from the same interaction in the detec-

tor. The slices are collections of three dimensional charge depositions that appear to be

physically separated from other depositions in the detector with the aim being to isolate

particles with neutrino or cosmic origin.

Pandora attempts to find a vertex for each slice by finding all possible vertices and

using a Multi-Variate Algorithm (MVA), a support vector machine or boosted decision

tree [173]. The MVAs are trained on a number of indicative features to select the most

probable candidate. MVAs are also used to characterise 2D clusters as either track-like or

shower-like. Tracks are reconstructed in the same way as cosmic ray muons but showers

are re-clustered using an envelope that expands outwards from the vertex [173].

The final stage is to create a hierarchy, called a particle flow, of 3D track and shower

objects in a neutrino slice by working outwards from the interaction vertex. Figure 5.7

shows an example of particle flow reconstruction with the individual particles, called

PFParticles (Particle Flow Particles), highlighted.

Calorimetric reconstruction is performed on track objects after the Pandora software has

been run. The aim is to reconstruct the energy loss per unit length of the track, dE/dx,

for use in particle identification and kinematic calculations. Each readout plane should

see the same charge and so the reconstruction is performed separately for every plane.
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(a) (b)

Figure 5.8: The scaling of reconstructed PE in TPB coated PMTs with the true energy
depositions of cosmic ray muons in the detector (a) below 0.1 GeV and (b) above 0.1
GeV.

A correction is applied to account for the charge loss due to recombination and electron

lifetime, discussed in Section 3.3.1, to transform the area under each hit to the energy

deposition seen by each wire. The angle of the track to the wire plane is then calculated

to determine the length of track that contributes to the observed energy deposition, and

hence the dE/dx.

5.2.2 The photon detection system

In order to use the PDS as a trigger only minimal reconstruction is required. The first

step is to process the optical detector waveforms in order to locate the times of incident

collections of photons. A baseline subtraction and simple noise filter are run before finding

peaks using a threshold configured for each type of detector. The charge is determined

by integrating the area under the optical hit and this is converted into PE using a linear

scaling factor from test bench measurements. The scaling of the number of reconstructed

PE with the true energy deposition in the detector can be seen in Figure 5.8.

Each interaction in a TPC should result in a collection of optical hits over a range of

PMTs and ARAPUCAs, referred to as an optical flash. Optical flashes are reconstructed

by filling a histogram with the optical hits on coated PMTs weighted by their PE. The

bin width is set to the desired timing resolution, here 2 ns. A threshold of 0.1 PE is used

to identify the start of flashes and all hits 100 ns after the initial trigger are considered
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as part of the same flash.

These flashes can be used to match objects reconstructed in the TPC with the interac-

tion that caused the original trigger, greatly reducing the cosmic ray background [125].

Simulations of neutrino interactions were used to parametrise several features of the rela-

tionship between optical flashes and TPC charge distributions in terms of the X position

of the charge weighted center of neutrino interactions. The optical flashes are defined as

all of the optical hits in the first 100 ns after the trigger.

The first features are the distances between the PE weighted centers of the optical hits

in the flash and the charge weighted centers of the Pandora reconstructed neutrino slice

in Y, ∆Y , and Z, ∆Z. The spread of PE is defined as

S =

∑
i PE

2
i · r2

i∑
i PE

2
i

(5.3)

where PEi is the number of PE from PMTi and ri is the distance from PMTi to the PE

weighted center, is also calculated. The last feature used is the ratio

R =

∑
PEuncoated∑
PEcoated

(5.4)

where coated refers to TPB coated PMTs, sensitive to both direct and reflected light.

The features were binned in the X position of the charge weighted center and Gaussian

fits were used to calculate the means and standard deviations, σ, for each bin.

To match the most likely neutrino slice in an event, these features are calculated for

every slice not rejected as a cosmic and a score is created. The score is defined as

score = wY
|∆Y |
σY

+ wZ
|∆Z|
σZ

+ wS
|∆S|
σS

+ wR
|∆R|
σR

(5.5)

where ∆S(R) is the difference between the calculated S(or R) and what would be expected

given the charge weighted center of the Pandora slice and the w are weights which are

optimised to maximise separation between signal and background.
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Figure 5.9: Comparison of simulated particle CRT strip crossing points to reconstructed
positions showing slight non-linearity near the SiPM locations.

5.2.3 The cosmic ray tagger

Rather than raw digitised waveforms from the SiPMs, the outputs from the CRT system

are collections of ADC counts, timestamps and SiPM channel IDs. The waveform process-

ing is effectively performed by the CRT hardware. A single strip of plastic scintillator that

a charged particle crosses will result in two SiPM data products. These data products are

combined by averaging the times, converting the total ADC counts to the number of PE

and estimating the perpendicular position between the SiPMs that the particle crossed.

The number of PE per SiPM, N
0(1)
PE , is estimated using

N
0(1)
PE =

ADC0(1) −B
S

, (5.6)

where ADC0(1) is the charge at SiPM 0(1), B and S are the baseline and slope from test

stand measurements [124].

The position, D, between the SiPMs where the particle crossed is estimated using the

empirical equation,

D =
W

2
arctan

(
N0
PE

N1
PE

)
+
W

2
(5.7)

where W is the width of the strip. A comparison between the true simulated crossing

position and the calculated position can be seen in Figure 5.9.

The times and 3D positions of charged particles that cross taggers are called CRT hits.

They are reconstructed by looking for 2D overlaps between strips within 80 ns of each
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Figure 5.10: Diagram of CRT hit reconstruction. When two triggered SiPMs in X-Y
coincidence are within 80 ns of each other a hit is reconstructed. The position resolution
is improved by using the charge sharing between SiPM pairs.

other, as shown in Figure 5.10. The most likely 2D position from Equation 5.7 is given

as the center of the hit and errors are assigned from the empirical parametrisation. If the

strip is located in one of the bottom modules with 1D coverage, the centre of the strip is

used as the hit position with limits equal to the length of the strip. The measured number

of PE in each strip is then corrected for attenuation using the reconstructed hit position

in the inverse of Equation 5.2.

If a charged particle crosses two or more CRT taggers its trajectory can be reconstructed,

this object is referred to as a CRT track. CRT hits are first clustered in 0.1 µs time

windows for each module. Simply matching all time coincident pairs of hits on different

modules can lead to a high multiplicity of reconstructed tracks due to δ-rays and showers

coming off the primary cosmic ray muon. Hits within a time window are averaged over a

60 cm radius to mitigate this effect. CRT tracks are then formed by joining averaged hits

within a time window across modules, an example of this can be seen in Figure 3.16. The

two top planes can be used to create CRT tracks for particles which stop in the volume

enclosed by the CRT or exit in an area with reduced coverage.
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5.3 Reconstruction performance

It is important to be able to characterise the reconstruction efficiencies for both the cross

section channel that is under study and all of the relevant background processes. This is

usually done using a combination of both Monte Carlo simulations and measurements of

well known processes. As SBND is not currently taking data, the predicted reconstruction

efficiencies were calculated using the simulations described above.

5.3.1 The time projection chamber

For the purpose of measuring νµ charged current inclusive cross sections, the reconstruc-

tion and identification of the primary muon track in the TPC is the most critical compo-

nent. The track reconstruction was performed by Pandora [173] as described in Section

5.2.1. There are five possible outcomes when reconstructing a muon track:

• A track in a neutrino slice.

• A shower in neutrino slice.

• A cosmic ray muon track.

• A mixture of the above.

• No reconstructed object.

The traditional kinematic variables when measuring double differential νµ CC cross

sections are the momentum, Pµ, and the cosine of the angle of the primary muon track

to the neutrino beam, cos θµ. Figures 5.11 and 5.12 show the efficiency for reconstructing

primary muons from νµ CC interactions inside the active volume as tracks in neutrino

interactions as a function of Pµ and cos θµ. The total efficiency was estimated to be 83%,

which is within the limits specified in the proposal [11].

The fractional bias and resolution of measuring the kinematic variables for correctly

reconstructed muons can also be estimated. The angle to the beam was measured directly
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(a) (b)

Figure 5.11: Relative efficiency of primary muon reconstruction as a function of Pµ. (a)
A stacked histogram of the true distribution with the reconstruction outcomes. (b) The
percentage efficiency of particles reconstructed as tracks in neutrino slices.

Figure 5.12: Relative efficiency of primary muon reconstruction as a function of cos θµ.
(a) A stacked histogram of the true distribution with the reconstruction outcomes. (b)
The percentage efficiency of particles reconstructed as tracks in neutrino slices.
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Figure 5.13: The fractional bias and resolution of the reconstructed track θµ as a function
of the true θµ. The diagonal line across the main distribution is the result of the start
and end points of the track being incorrectly identified, this happens approximately 7%
of the time.

from the start and end points of the 3D reconstructed track. The fractional bias and

resolution, Figure 5.13, were calculated by fitting Gaussian functions to the fractional

difference binned as a function of the true angle to the beam.

Topological methods for estimating particle momenta must be employed as SBND is

not magnetised, the lack of magnetic field also means it is not possible to perform sign

selection on particles. For track-like particles fully contained in the active volume, the

range of the track can be compared to the standard range curve of muons in liquid argon

[141].

If a muon track exits the active volume, the relationship between the momentum of the

muon and the amount of Multiple Coulomb Scattering (MCS) that it undergoes can be

used [174]. Tracks must be long enough to properly measure the average scattering angle.

The momentum was reconstructed by applying the range method to contained tracks and

the MCS method to exiting tracks. The fractional bias and resolution as a function of
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Figure 5.14: The fractional bias and resolution of the reconstructed track Pµ as a
function of the true Pµ using range for contained tracks and MCS for exiting tracks.

the true momentum are shown in Figure 5.14.

The lack of magnetisation and time of flight detectors means that Particle Identification

(PID) algorithms are also only able to use topological and calorimetric information. The

method used for contained tracks compares the reconstructed dE/dx versus residual range,

the distance from the end of track, curves with the expected distributions for muons, pions,

protons and kaons, shown in Figure 5.15, via a χ2 test. The expected distribution with

the minimum χ2 was taken as the particle label for this track. This method requires a

particle to stop via ionisation losses in the TPC active volume and there is currently no

universally accepted method for identifying particles which do not stop. The minimum

χ2 distributions for primary stopping muons, pions and protons are shown in Figure 5.16.

Separation between muons/pions and protons using calorimetry is good for stopping

particles. The separation is poor between muons and pions because their masses are

similar and the short lifetime of the pion means it is likely to decay before it has come

completely to rest, effectively shifting the dE/dx curve further into the muon expectation.

One of the biggest neutrino induced backgrounds to νµ CC is νµ NC with charged pions

- 101 -



Chapter 5. Simulation and reconstruction

Figure 5.15: Expected dE/dx vs range curves for track-like particles in liquid argon.

(a) (b)

(c)

Figure 5.16: χ2 PID distributions for (a) muons, (b) charged pions and (c) protons with
the expected distribution that corresponds to the minimum labelled.
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(a) (b)

Figure 5.17: Number of reconstructed PE in beam window per TPC for (a) when there
was no visible energy deposition in time with the beam and (b) when there was a νµCC
with a vertex inside the AV. (b) Also considers interactions where particles cross between
the two TPCs.

in the final state. Therefore, a robust method for separating muons and pions is required,

this is further discussed in Section 6.4.

5.3.2 The photon detection system

The PDS will be integral for triggering on neutrino interactions inside the TPC and the

performance will directly affect the signal selection efficiency and background rejection.

To study the trigger requirements for νµ CC selection, the distribution of PE reconstructed

by coated PMTs in the beam window for νµ CC interactions with vertices contained inside

the active volume was studied, shown in Figure 5.17.

There is great potential to use the PDS for improving the tracking and calorimetry per-

formance of the detector, but given the currently available tools the usage was restricted

to just t0 matching in this analysis. It is important to be able to reconstruct the individual

optical flash times in order to do this. The difference between the reconstructed optical

flash time and the true interaction time for cosmic ray muons is shown in Figure 5.18 for

coated PMTs.

As discussed in Section 5.2.2, the PDS can be used to help identify which TPC recon-

structed object was responsible for the trigger. The score distributions for interactions in

time and out of time with the beam window are shown in Figure 5.19.
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(a) (b)

Figure 5.18: (a) Comparison between the number of reconstructed optical flashes and
the number of flashes that would be expected for all true charged particles depositing
more than 10 MeV in the detector. (b) Difference between reconstructed optical flash
time and true interaction times of cosmic ray muons.

(a) (b)

Figure 5.19: (a) Flash matching score for in-time and out (of)-time interactions in
the TPC, where in-time refers to interactions within the 1.6 µs beam window. (b) The
percentage of in time and out of time events removed with different maximum flash score
values.
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(a)

(b) (c)

Figure 5.20: An example of CRT hit resolution calculations. (a) The 2D distribution of
the difference in true and reconstructed Z and X coordinates for the top CRT tagger. (b)
& (c) The 1D projections with Gaussian functions fit to estimate the bias and resolution
of the tagger.

5.3.3 The cosmic ray tagger

The primary use of the CRT in this analysis was the reduction of cosmic ray muon

backgrounds, by both rejecting false triggers from cosmic muons in time with the beam

and removing TPC reconstructed objects in the same readout window as neutrino events.

In order to do this, the efficiency of reconstructing CRT hits and tracks for muons which

enter the TPC must be high.

The performance of CRT hit reconstruction was evaluated using a sample of cosmic

ray muons generated by CORSIKA [168]. The coordinate resolution of each tagger was

calculated by fitting Gaussian functions to the differences between the reconstructed 3D

hits and the true crossing points, as shown in Figure 5.20. The results for all of the taggers

are shown in Table 5.2.
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Table 5.2: Bias and resolution in all three spatial dimensions for hit reconstruction on
each tagger measured using a realistic flux of cosmic ray muons. An increase in Y bias
and resolution is observed for the taggers around the detector due to downward going
muons. Taggers are labelled with respect to the beam direction.

X (cm) Y (cm) Z (cm)
Tagger Bias Resolution Bias Resolution Bias Resolution

Bottom 0.006
(±0.0022)

1.6
(±0.0018)

−0.06
(±0.00094)

0.66
(±0.00085)

0.0078
(±0.002)

1.6
(±0.0017)

Back face −0.019
(±0.0033)

2.2
(±0.0029)

−0.094
(±0.0039)

2.7
(±0.0032)

0.23
(±0.0081)

0.46
(±0.0082)

Front face −0.034
(±0.0034)

2.3
(±0.003)

−0.1
(±0.0041)

2.7
(±0.0034)

0.23
(±0.0083)

0.46
(±0.0085)

Left side 0.2
(±0.0072)

0.48
(±0.0087)

−0.12
(±0.0039)

2.8
(±0.0033)

0.058
(±0.0032)

2.3
(±0.0028)

Right side −0.22
(±0.0075)

0.47
(±0.0079)

0.11
(±0.0038)

2.8
(±0.0032)

0.007
(±0.0031)

2.3
(±0.0028)

High top −0.0044
(±0.0018)

2.4
(±0.0016)

0.27
(±0.0044)

0.42
(±0.0034)

−0.0097
(±0.0018)

2.4
(±0.0015)

Low top 0.0028
(±0.0017)

2.4
(±0.0015)

0.27
(±0.0042)

0.42
(±0.0033)

−0.00017
(±0.0017)

2.4
(±0.0015)

- 106 -



Chapter 5. Simulation and reconstruction

Figure 5.21: CRT hit reconstruction efficiency. Expected: cosmic ray muons which
cross at least two overlapping perpendicular scintillator strips in the same tagger, total
= 97%. Enters CRT: cosmic ray muons which enter the volume enclosed by the CRT
system, total 94%. Enters TPC: cosmic ray muons which enter the TPC, total = 89%.

The reconstructed hit resolutions were predicted to be between 1.5 and 1.8 cm based on

test bench measurements [156]. This was initially confirmed by the simulations but the

tuning to MicroBooNE data, as described in Section 5.1, increased these values due to

the broadening of the PE peak and saturation effects. This particularly affected the side

taggers as they are exposed to a flux of mostly downward going cosmic ray muons which

tend to travel further in the plastic scintillator and deposit a greater amount of charge.

The hit finding efficiency as a function of muon momentum and θ can be seen in Figure

5.21. The reductions in efficiency for low momentum muons at angles around 50 and 120

degrees were from the gap in coverage between the lower top tagger and side taggers.

The track reconstruction efficiency as a function of momentum and θ can be seen in

Figure 5.22. The reduction in efficiency was due partly to muons which are not through-

going and partly to the reduction of coverage in the bottom plane combined with the

flux of mostly downward going muons. The reconstructed track angles θ and φ, the angle

around the beam, compared to the true angles are shown in Figure 5.23.

5.3.4 CRT-TPC matching

In order to tag cosmic ray muon tracks in the TPC, tools for matching between recon-

structed CRT hits and tracks and TPC tracks were developed. As discussed in Section

5.2.1, particles which cross the detector outside of the trigger time will have their TPC
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Figure 5.22: CRT track reconstruction efficiency. Expected: cosmic ray muons which
associated with at least two CRT hits on separate taggers, total = 99%. Enters CRT:
total = 62%. Enters TPC: total = 53%.

Figure 5.23: The difference between the true and reconstructed CRT track (a) angle to
the neutrino beam and (b) angle around the neutrino beam.
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Figure 5.24: Diagram of CRT hit to TPC track matching demonstrating the projection
of a TPC track onto the CRT plane.

reconstructed position in the drift coordinate shifted. The CRT has nanosecond timing

resolution and should be able to provide the true crossing times of the particles if matched

correctly.

The CRT hit to TPC track matching is performed by selecting a track-hit pair and

shifting the drift position of the track according to the time recorded by the hit. The

track is then projected outwards onto the corresponding CRT tagger and the Distance

of Closest Approach (DCA) to the hit is calculated. This is shown diagrammatically in

Figure 5.24.

As there can be large uncertainties in CRT hit positions, especially for hits on the bottom

plane, the DCA is calculated by treating the hit as a 3D cuboid. An infinite length line is

drawn between the start and end of the TPC track and a ray-box intersection algorithm

[175] is used to determine if the infinite length line crosses the hit. If not, the minimum

distance between the infinite length line and the edges of the cuboid is used, calculated

using a ray-segment distance algorithm [176].

The value of the DCA can then by used to determine if the hit-track pair are a good

match. This was tuned using a sample of cosmic ray muons, the DCA distributions for

track-hit pairs that are either matched or not matched to the same true particles are

shown in Figure 5.25 and the efficiency and purity of the matching as a function of the
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(a) (b)

Figure 5.25: (a) DCA distributions CRT hit to TPC track matching for tracks with
a true match and tracks without. (b) Efficiency and purity of CRT hit to TPC track
matching. Correct matching is defined for tracks having a matched time within 2 µs of
their true time.

maximum DCA value are shown in Figure 5.25. The efficiency and purity were defined as

E =
Nmatch

Nall
, P =

N correct

Nmatch
(5.8)

where Nall is the number of tracks that have a true match, Nmatch is the number of those

tracks with a reconstructed match and N correct is the number of matched times within 2

µs of the true time.

Only 53% of cosmic ray muons that entered the TPC were associated with CRT tracks

but the additional topological information in the CRT track provides a potential for

creating a high purity tagged sample for doing calibrations and solving some ambiguities

in the track-hit matching. TPC tracks are matched to CRT tracks by shifting the drift

position as in the track-hit matching and then calculating the average DCA over each

trajectory point in the TPC track and the angle between the tracks, Figure 5.26.

The DCA between a track point, p, and a CRT track with start point s and end point

e is given as

DCA =
|(p− s)× (p− e)|

|e− s|
. (5.9)

The track-track matching was also tuned on a sample of cosmic ray muons and the two

dimensional distributions for truth matched and unmatched pairs are shown in Figure
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(a)
(b) (c)

Figure 5.26: Diagram of CRT track to TPC track matching. (a) Identification of the
TPC crossing points. (b) Shifting TPC tracks to the CRT track time. (c) Matching tracks
with angle and average DCA.

(a) (b)

Figure 5.27: DCA and angle distributions CRT track to TPC track matching with
initial box selection region shown for (a) truth matched track pairs and (b) unmatched
track pairs.

5.27. The matching decision is made by first performing a box selection to reject any

pairs which do not match. If there is more than one match candidate remaining, the pair

with the smallest angle between the tracks is chosen as the match. The efficiency and

purity as a function of the angle are shown in Figure 5.28.
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Figure 5.28: Efficiency and purity of CRT track to TPC track matching using the same
definitions as for CRT hit matching.
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Event selection

In this chapter, the process of selecting the primary muon from charged current νµ in-

teractions and rejecting backgrounds is discussed. Section 6.1 will outline the signal and

background definitions relevant to this analysis, their expected trigger rates and initial

reconstructed kinematic distributions. Section 6.2 describes the process of identifying

and removing the cosmic ray muon background. The steps taken to identify the primary

muon in νµ CC interactions are described in Section 6.4. Section 6.5 contains the selected

distributions and Section 6.6 contains an analysis of the selection performance.

6.1 Signal and background definitions

In order to measure the νµ CC inclusive cross section, the primary muon must be recon-

structed and correctly identified from any other particle types. Muons from other sources

such as cosmic rays and neutrino interactions outside of the TPC will form a large part

of the background. Any neutrino interactions with a vertex outside of the TPC active

volume are referred to as dirt interactions, with interaction products being dirt particles.

There will also be backgrounds from charged pions and protons being misidentified

as muons with the majority contributed by νµ NC interactions inside the TPC. The

identification of the wrong particle as the primary muon for νµ CC interactions will have

no effect on the overall cross section measurement but will smear kinematic distributions
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when measuring differential cross sections and so should be minimised.

6.1.1 Trigger rates

There are three main categories of event that will result in a trigger, neutrino interactions

in the TPC, neutrino interactions outside of the TPC with interaction products entering,

and cosmic ray muons in time with the beam. As discussed in Section 3.2, each beam spill

will consist of 5×1012 POT and have a duration of 1.6 µs. The exact trigger specifications

are not yet finalised but the optical flash reconstruction requirement of 0.1 PE in the beam

window approximately corresponds to a 20 MeV energy deposit, as can be seen in Figure

5.8. A requirement of 20 MeV energy deposition in the detector coincident with the

beam spill (0 to 1.6 µs time window) was therefore used for estimating the trigger rates.

There is currently no consideration of the spatial position or coincidence between photon

detectors but these features are likely to be used in the final trigger design to further

reduce backgrounds.

From the simulations described in the previous chapter, the probabilities of each type

of trigger were estimated to be:

• Neutrinos in the TPC: 1 per 25 spills (Pν = 0.040)

• Neutrino outside of the TPC: 1 per 65 spills (Pdirt = 0.015)

• In-time cosmic ray muons: 1 per 175 spills (Pin−time = 0.006)

Given the limited computing resources at the time of writing it was not possible to fully

simulate all types of triggered events together with enough statistics. The large number

of readout channels with µs to ns time resolution combined with the need to simulate

electron drift and photon propagation results in both high memory usage and CPU time.

A scaling scheme was implemented to make use of the available simulations, which were:

• Sample 1: 49,090 (45,525 triggered) events with a BNB neutrino interaction inside

the TPC volume + 10 cm in each direction and a cosmic overlay. (POT1
sim =

5.27×1018)
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• Sample 2: 5,133 events with in-time cosmic ray muon interactions depositing suf-

ficient energy to trigger the readout. (equivalent POT2
sim = 4.50×1018)

• Sample 3: 13,600 events with a BNB neutrino interaction entering the TPC from

outside and no cosmic overlay. (POT3
sim = 4.93×1018)

Sample 1 contained all of the signal events which were scaled up to the total expected

POT of 6.6×1020 by

N ν
total = Nν,1

sim ·
POTtotal
POT 1

sim

. (6.1)

The overlaid cosmic ray backgrounds were also scaled in the same way. This sample also

contained a small number of dirt interactions from the 10 cm border around the TPC.

The rest of the dirt contribution was estimated from sample 3 by taking all of the events

triggered by a neutrino with an interaction vertex further than 10 cm from the TPC border

and then applying a similar scaling as in Equation 6.1. Events that are triggered by dirt

interactions will also contribute to the cosmic ray background, so the cosmic ray muons

from sample 1 were further scaled by

N cosmic
total = N cosmic,1

sim · POTtotal
POT 1

sim

·
(

1 +
Pdirt
Pν
− Pdirt · Pν

)
(6.2)

where Pdirt, Pν are the probabilities of a trigger from a dirt or TPC neutrino given on the

previous page. This gave the total expected distributions from beam related triggers.

The contribution from in-time cosmic ray muon triggers was estimated from sample 2.

The effective simulated POT for this sample was calculated as

POT 2
sim =

POTspill ·N in−time,2
sim

Pin−time
(6.3)

where POTspill is the number of POT in each spill, N in−time,2
sim is the number of in-time

cosmic events simulated and Pin−time is the probability of an in-time cosmic trigger in a

spill. The in-time cosmic events were then scaled by

N in−time
total = N in−time,2

sim · POTtotal
POTsim

· (1− Pin−time · (Pν + Pdirt − Pν · Pdirt)) (6.4)
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(a) (b)

Figure 6.1: Reconstructed Pµ and cos θµ distributions for all slices reconstructed by
Pandora and scaled to 6.6×1020 POT. The large bin to bin variations are due to the
Pandora reconstruction failing for high energy cosmic ray muon tracks rather than low
statistics, these tracks are rejected by the first pass of the unambiguous cosmic rejection
and so the reconstruction artefacts do not propagate to the final distributions.

which takes into account events where there are both cosmic and neutrino triggers. All

three samples were combined with this scaling to provide an estimate of the total event

rate expected in SBND.

6.1.2 Initial distributions

Figures 5.11 and 5.12 in Section 5.3 show the distributions of true Pµ and cos θµ for all νµ

CC interactions inside the detector active volume. In order to properly evaluate the per-

formance of the selection on both the signal and background through the different stages,

distributions must be shown in reconstructed variables. A basic primary muon selection

was applied whereby the longest track in a slice reconstructed by Pandora was called the

muon and the kinematics were reconstructed as in Section 5.3. The reconstructed Pµ and

cos θµ distributions for all Pandora slices scaled to the expected POT are shown in Figure

6.1. Figure 6.2 shows the same distributions after the unambiguous cosmic removal.

As is clear from Figure 6.2, cosmic ray muons are expected to be by far the largest

background to the inclusive analysis and their identification and removal represents a

significant part of the effort in this analysis. The contributions from in-time cosmic

triggers can be removed by taking data with a fake beam trigger during periods when the
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(a) (b)

Figure 6.2: Reconstructed Pµ and cos θµ distributions for all possible neutrino slices
identified by Pandora and scaled to 6.6×1020 POT.

beam is not delivering spills (off-beam), and then scaling and subtracting this data from

the on-beam data. This is a robust method of removing in-time backgrounds provided

that the off-beam data is taken during the same operational conditions as the on-beam

data that it is subtracted from.

6.2 Cosmic identification

Pandora only makes use of topological information in the TPC to tag unambiguous cosmic

ray muons [173]. To reduce the cosmic background even further, a suite of algorithms

utilising all three detector subsystems was developed.

All of the slices remaining after the unambiguous cosmic removal were reconstructed

with the assumption that they originated from neutrino interactions. The process of

trying to find a vertex for a slice containing a cosmic ray muon often meant that any

slight kink in the track was often misidentified as a neutrino interaction vertex with two

particles emerging from it. As a result, for slices containing two or more reconstructed

tracks, the angle between the two longest tracks was peaked at near 180 degrees for cosmic

ray muons and had a much wider distribution for neutrino interactions, Figure 6.3.

The criteria used to identify specific cosmic ray muon topologies in reconstructed slices

are described below. Each criteria was applied to the longest track in the slice and then, if

there were two or more tracks, the criteria were applied to the two longest tracks merged
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Figure 6.3: The angle between the two leading tracks for slices matched to cosmic ray
muon and neutrino interactions.

together if the angle between them was greater than 150 degrees.

The performance of each criteria was evaluated by comparing reconstructed νµ CC slices

to cosmic ray muon slices. The removal efficiency for true νµ CC slices was defined as

Eν =
Nremoved

Ntotal

(6.5)

where Ntotal is the total number of νµ CC interactions reconstructed by Pandora and

Nremoved is the number removed by the criteria. The removal efficiency for true cosmic

ray slices was defined as

Ecosmic =
Nremoved

Npossible

(6.6)

where Npossible is the total number of cosmic ray muons that could be removed (e.g. for

the stopping criteria only particles which actually stop in the TPC were considered) and

Nremoved is the number of those removed by the criteria.

The efficiency curves were produced by area normalising the Ntotal and Npossible distri-

butions and calculating their forward or backwards cumulative, depending on the selec-

tion criteria removal direction. The criteria values were determined by calculating the

Kolmogorov-Smirnov distance [177] between the area normalised histograms while requir-

ing that the neutrino misidentification rate for each criteria remained below 4%.

The plots shown here analysing the performance of the cosmic identification contain

only on-beam equivalent simulations, sample 1, with no contribution from in-time cosmic

rays. The distributions are expected to be similar for in-time cosmic ray muons, with a
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(a) (b)

Figure 6.4: Flash matching cosmic ID. (a) Distribution of flash matching score for muon
neutrinos and cosmic ray muons. (b) Signal and background removal dependence on flash
score. A score of zero was assigned in cases where the slice was reconstructed in both
TPCs.

slight reduction in performance where t0 tagging is employed. Only reconstructed slices

that were not identified as unambiguous cosmic ray muons were considered.

6.2.1 Flash matching

The flash matching described in Section 5.2.2 is expected to be the most powerful method

for removing the cosmic ray background. It is applicable to all cosmic ray muons that

cross the detector outside of the beam window. Figure 6.4 shows the distributions of the

flash matching score and the relationship between the score and the removal efficiencies

for cosmic ray muons and νµ CC interactions.

The flash matching was modified slightly to ignore slices that were reconstructed in both

TPCs. Particles which cross the CPA outside of the beam window will be split in two by

the reconstruction and then stitched back together and tagged as cosmic ray background

by later stages of Pandora. Any remaining tracks composed of reconstructed hits in both

TPCs must have been coincident with the beam and so a score of zero was given.

- 119 -



Chapter 6. Event selection

(a) (b)

Figure 6.5: CRT hit matching cosmic ID. (a) Distance of closest approach distributions.
(b) Signal and background removal dependence on the DCA criteria. Neutrino slices
which have a true CRT hit association were not included.

6.2.2 CRT hit matching

The matching between CRT hits and TPC tracks is described in Section 5.3.4. The

proportion of ambiguous cosmic ray muon slices that had at least one associated CRT

hit and had the potential to be removed with this criteria was estimated to be 82%. The

distributions of the DCA between the longest track and the closest hit are shown in Figure

6.5 along with the relationship between the DCA and the removal efficiencies.

It is possible for high energy neutrino interactions to result in reconstructed CRT hits

and so a slice was only tagged as a cosmic ray if it was matched to a CRT hit outside of the

beam window. The large distance between the TPC and the CRT taggers occasionally

resulted in large deviations between projected reconstructed track directions and true

trajectories, hence why a loose removal criteria was required to achieve high efficiency.

6.2.3 CRT track matching

The details of CRT track and TPC track matching are also found in Section 5.3.4. 42%

of ambiguous cosmic ray muons had a CRT track associated with them. Both the average

DCA and angle between tracks were calculated and then weighted to form a single score

rather than performing a box selection as in Section 5.3.4. The score distributions can be

seen in Figure 6.6.
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(a) (b)

Figure 6.6: CRT track matching cosmic ID. (a) Track score distributions. (b) Signal
and background removal dependence on the track matching score.

It was very rare that the product of a neutrino interaction in the TPC would form

a CRT track and so if there was a match the TPC track was tagged as a cosmic. The

removal efficiency plateaus because a proportion of the cosmic ray muon tracks underwent

some kind of hard scatter between CRT taggers and so the trajectories did not appear to

match.

6.2.4 Stopping particles

At lower energies, muons will enter the TPC and stop through ionisation processes, this

was the case for 32% of the cosmic ray muons not unambiguously tagged by Pandora.

Stopping particles should be identifiable by their Bragg peaks, the energy loss of the track

increasing towards the end of its range [141]. A tool was developed to identify the presence

of a generic Bragg peak, rather than one for a specific particle as in Section 5.2.1.

The dE/dx versus residual range distributions in the first and last 20 cm of a track

were fit with both a zero degree polynomial and an exponential function using ROOT

minimisation tools [166]. The ratio between the χ2 of the two fits was calculated and used

to identify the Bragg peak. An increasing value of χ2
pol/χ

2
exp indicates a better exponential

fit and hence a stopping particle.

As it is likely that particles from neutrino interactions will also stop inside the detector,

this criteria was only applied to tracks which had one end that appeared to exit the
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(a) (b)

Figure 6.7: Stopping particle cosmic ID. (a) χ2 ratio distributions. (b) Signal and
background removal dependence on the χ2 ratio. In this case, only neutrino slices with
exiting tracks are shown.

detector. The χ2 ratio was only used for the non-exiting end of the track. This meant

that the criteria was not applicable to cosmic ray muons that entered through the APA

outside of the beam window, but further criteria could remove this topology. The χ2 ratio

distributions for stopping cosmic ray muons and neutrino interactions with exiting tracks

are shown in Figure 6.7.

6.2.5 Near exiting particles

If cosmic ray muons do not stop, then by definition they should pass in and out of

the TPC enclosed volume. Pandora’s unambiguous cosmic identification removed most

of these tracks but missed some in cases where the ends near the TPC walls were not

correctly reconstructed. This criteria removed tracks which both started and ended within

a certain distance from the TPC walls. The containment volume for cosmic and neutrino

particles is shown in Figure 6.8.

6.2.6 TPC beam flash

As discussed in Section 5.3.2, the PDS was used for triggering on events that contain

neutrino interactions in the beam window. The current simplified trigger selected events

based on the number of reconstructed PE in coated PMTs inside the beam window. As
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(a) (b)

Figure 6.8: Near exiting particle cosmic ID. (a) Containment volume distributions de-
fined as the maximum distance from the start or end of the track to the nearest TPC
wall. (b) Signal and background removal dependence on the containment volume.

(a) (b)

Figure 6.9: TPC beam flash cosmic ID. (a) Beam coincident PE distributions. (b)
Signal and background removal dependence on the beam PE.

SBND is effectively made up of two nearly optically isolated TPCs they were triggered

independently to reduce the cosmic background.

Figure 6.9 shows the reconstructed PE distributions for TPCs containing νµ CC inter-

actions and for those containing only cosmic ray muons outside of the beam window. The

percentage of cosmic interactions that were fully contained in a TPC where there was no

activity in time with the beam was 43%. Events where the neutrino interaction products

are in both TPCs do not contribute to the cosmic distribution.
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(a) (b)

Figure 6.10: APA crossing cosmic ID. (a) Minimum distance to APA distributions. (b)
Signal and background removal dependence on the minimum APA distance.

6.2.7 APA crossing

If particles enter through the APA outside of the beam window their reconstructed po-

sitions will be shifted away from the entry point. If reconstructed slices were shifted

through the APA, Pandora would remove them automatically. If they were shifted into

the TPC their true interaction times could be matched by minimising the distance to the

APA using drift position corrections from PDS flash times.

The leading track in the slice was shifted by every flash time in the same TPC as the

slice and the distance between the end of the track and the APA was calculated. If the

minimum distance to the APA was below some limit, shown in Figure 6.10, then the track

was matched to the flash time. If the time was outside of the beam window the track was

tagged as a cosmic ray muon. 36% of ambiguous cosmic ray muons crossed at least one

of the APAs.

The removal efficiency plateaus at 85% due to a combination of the optical flashes

being below the reconstruction threshold and the end points of tracks being incorrectly

reconstructed.
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Table 6.1: Cosmic ID criteria values used in this analysis with the signal retention and
background rejection for each individual criteria and the total shown. All cosmic ray muon
slices not removed by Pandora were considered here, rather than just those matching the
target topology.

Cosmic ID criteria Value Signal
retained

Background
rejected

Flash matching score > 22.05 96.1% 89.2%

CRT hit matching DCA < 19.50 cm 96.2% 38.8%

CRT track matching score < 131.00 98.7% 40.4%

Stopping particle χ2 ratio > 1.42 96.0% 27.3%

Maximum start/end distance to wall < 8.20 cm 96.1% 28.1%

TPC beam flash < 0.59 PE 99.8% 39.6%

APA crossing distance < 1.17 cm 97.5% 32.4%

Total - 88.8% 98.7%

6.2.8 Combined identification performance

The cosmic identification criteria values used in this analysis are summarised in Table 6.1.

As the majority of the criteria were designed to identify different topologies of cosmic ray

muons, MVA techniques were not appropriate for combining criteria.

Cosmic ray muons may fit into more than one of these topological categories and so op-

timisation methods could be employed to find the combination of one dimensional criteria

that maximise cosmic removal and minimise neutrino removal. It would be advisable to

carefully calibrate each algorithm to data before optimisation using the tools developed

here. The performance of the criteria chosen individually was sufficient for the inclusive

analysis presented here.

The configurations of cosmic identification criteria in Table 6.1 were able to reject 99%

of the cosmic ray slices not removed by Pandora and retain 89% of reconstructed νµ CC

slices. Figure 6.11 shows the survival efficiency of the cosmic identification as a function

of the reconstructed momentum and cos θ of the longest track in a slice. The post cosmic

identification kinematic distributions are shown in Figure 6.12. Figures 6.11 and 6.12

were created using all three samples.
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(a) (b)

Figure 6.11: Percentage of νµ CC and backgrounds removed by cosmic ID as a function
of reconstructed (a) Pµ and (b) cos θµ.

(a) (b)

Figure 6.12: Reconstructed (a) Pµ and (b) cos θµ distributions for all reconstructed
neutrino slices not removed by cosmic identification, scaled to 6.6×1020 POT.
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Table 6.2: External background TPC entry points showing the percentage of tracks
entering each face and the mean distance travelled from that face (defined relative to
the beam direction) into the TPC. Calculated for all Pandora reconstructed neutrino
slices truth matched to either (a) cosmic ray muons or (b) dirt interactions. A left/right
asymmetry is observed in the dirt entry points because the beam center is in the left TPC.

(a) Cosmic ray muons

Face % entering Mean distance

Top 64.7 134 cm

Bottom 0 0 cm

Front 8.31 77.2 cm

Back 9.98 85.3 cm

Left 8.33 50.6 cm

Right 8.67 52.6 cm

(b) Dirt

% entering Mean distance

9.8 50.3 cm

9.7 49.1 cm

61.3 132 cm

1.19 22 cm

10.3 52.2 cm

7.79 50.6 cm

6.3 Fiducial volume

A fiducial volume in which the primary interaction vertex must be contained was defined

for two main purposes. The first was to reject any cosmic or dirt (neutrinos outside of the

active volume) particles which entered from outside of the TPC and were reconstructed

with a vertex a short distance away from the edge of the active volume. Dirt particles

reconstructed as neutrino interactions tended to be forward going and cosmic ray particles

tended to be downward going, both types of external particles remaining after cosmic

identification would often stop in the detector.

The expected proportions of dirt and cosmic particles entering each face of the TPC are

shown in Table 6.2. The reductions in external backgrounds with vertex distance from the

top and front faces are shown in Figure 6.13. A criteria of 20 cm from the top reduced the

cosmic background by a further 20% and a criteria of 15 cm from the front face reduced

the dirt background by 50%. It was determined that the optimum value from the other

faces was around 10 cm.

The second purpose of a fiducial volume was to ensure the accurate reconstruction of

kinematic variables. A required vertex distance of 50 cm from the back face was taken

to ensure both the containment of most secondary particles, Figure 6.14, and the reliable

reconstruction of momentum for exiting muon tracks using the MCS method. Boundaries
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(a) (b)

Figure 6.13: Reduction of post cosmic identification slices from different interactions
with a fiducial volume requirement from (a) the top face and (b) the front face of the
active volume.

(a)

Figure 6.14: Track-like particle containment as a function of neutrino interaction vertex
position in the beam coordinate.

were also applied to 5 cm either side of the cathode and 2.5 cm around the gap between the

two APA frames on each side to avoid misreconstruction of the neutrino interaction vertex.

The criteria around the edge of the detector were included to counter the potential, but

not simulated, effects of space charge as field distortions are likely to be most pronounced

near the active volume limits [147]. The total fiducial volume definition used in the

analysis is shown in Figure 6.15.
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Figure 6.15: Fiducial volume definition used for the νµ CC inclusive selection.

6.4 Primary muon selection

The combination of unambiguous cosmic removal by Pandora, TPC + CRT + PDS cosmic

identification and a fiducial volume requirement reduced the number of reconstructed

slices with a cosmic ray origin by 99.96%. The same process reduced the number of dirt

slices by 95.1%. This brings the expected TPC neutrino to external background ratio

from 0.013:1 to 10.9:1, a point where the majority of the sample is composed of neutrino

interactions in the TPC.

The next stage of the selection process is the identification of neutrino interactions with

a muon originating from the primary vertex. The main backgrounds to this are νµ NC

interactions with charged pions or protons which can look like muon tracks when they

have momenta greater than a few 100 MeV. There will also be an intrinsic background

from the ν̄µ component of the beam as there is no sign selection capability in SBND.

The muon selection criteria were developed using a sample of neutrino interactions in

the TPC with no external backgrounds. Due to the need to use calorimetry and topology

for particle identification, one of the selection requirements was that only the muon track
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(a) (b)

Figure 6.16: (a) The momentum dependence of track-like particles removed by a proton
χ2. (b) The percentage of track-like particles stopping through ionisation losses as a
function of momentum.

may exit the active volume, so any slice with more than one exiting track was rejected.

The criteria for calling a track contained was defined as 1.5 cm from the TPC border to

account for potential distortions in the track reconstruction.

6.4.1 Proton rejection

When contained, 77% of protons from the primary interaction vertex stopped via ionisa-

tion processes and should provide a distinctive Bragg peak in dE/dx vs residual range.

As demonstrated in Section 5.2.1, the χ2 method is effective at separating protons from

muons and charged pions. All tracks with a χ2 consistent with the proton hypothesis

were removed.

This removed 65% of all contained protons (0.7% of charged pions and 0.3% of muons)

with a momentum dependence shown in Figure 6.16a. The majority of proton tracks that

were not removed by this criteria were either too short for a reliable χ2 calculation or did

not stop through ionisation processes. The momentum dependence of particles stopping

via ionisation losses is shown in Figure 6.16b.
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6.4.2 Track length

A good separation of muons and charged pions is not possible using stopping curves

alone due to their similar masses. The method outlined in the SBND proposal [11] for

removing charged pions was to use the reconstructed track length as muons with similar

momenta are likely to travel much further. As the range of a muon is directly related to

its momentum [141], this criteria represents a lower threshold to the reconstructed muon

momentum distribution. Therefore, the most minimal removed track length is desirable.

The track length distributions for contained particles surviving the proton χ2 removal

are shown in Figure 6.17. A minimum length of 25 cm was used, reducing the proton

background by 60% and the pion background by 40%. All tracks longer than 100 cm were

tagged as muons as this selected less than 10% of charged pions and 5% of protons while

preserving around 60% of muons from subsequent criteria.

6.4.3 Scattering

Muons and charged pions should have different trajectories as charged pions will interact

via the strong force as well as the EM force. The strong scattering tends to involve larger

transfers of momentum leading to either large scattering angles which are reconstructed

as separate tracks or the charged particle stopping and transferring its momentum to

another hadron which may not visible to the detector.

Both of these processes give rise to short and fairly straight reconstructed tracks as

the strong scatters often occur before the particle has lost enough momentum for EM

scattering angles to become large. The apparent lower scattering angles of the pions and

protons are therefore due to a reconstruction artefact. In reality, they have larger scatter-

ing angles but these large scatters are reconstructed as separate tracks to try to account

for situations where the momentum is transferred between different charged hadrons.

This was parametrised by calculating the average DCA between the track points and a

straight line through the start and end of the track, shown in Figure 6.18. The average of

the scattering angles used in the MCS calculation [174] was also taken, shown in Figure
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(a)

(b) (c)

Figure 6.17: Reconstructed track length background rejection and signal selection. (a)
Reconstructed track length distributions for muons, charged pions and protons. (b) Back-
ground rejection as a function of track length. (c) Signal selection as a function of track
length. The lowest proton length bin in (a) is much higher than the others as these tracks
are not removed by the χ2 identification.
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(a) (b)

Figure 6.18: Muon identification by scattering DCA. (a) The average DCA between
track points and a straight line between the start and end of the track. (b) Track-like
particle rejection with DCA.

(a) (b)

Figure 6.19: Muon identification by reconstructed scattering angle. (a) The average
scattering angle used in the MCS momentum calculation. (b) Track-like particle rejection
with average scattering angle. The hadronic scattering angles are smaller because the
reconstruction breaks up large angle scatters into separate tracks.

6.19. Removal criteria of less than 0.2 average DCA and less than 30 degrees average

scattering angle were chosen.

6.4.4 Non-stopping particles

Only around 44% of primary charged pions from BNB neutrino interactions are expected

to stop via ionisation processes, compared to nearly 100% of muons. The stopping par-

ticle calculator described in Section 6.2 was used to take advantage of this property by

determining if a contained track appears to stop. The χ2 ratio values for charged pions
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(a) (b)

(c)

Figure 6.20: Muon identification by Bragg peak detection. (a) χ2 ratio for stopping
muons. (b) χ2 ratio for charged pions and protons which do not stop. (c) Particle
removal with stopping.

and protons which do not stop by ionisation and for muons which do are shown in Figure

6.20.

6.4.5 Reconstruction quality

It is possible to measure the momentum of contained muons using both the range and MCS

methods. The bias and resolution of the MCS method have a signature dependence on

the momentum of the track at short lengths. Therefore, while it isn’t used for calculating

the momentum of short tracks, the form of the dependence can be used to separate muons

from charged pions and protons.

The range method is accurate and has little bias, and so it can be used as a good

approximation for the true muon momentum. The range and MCS momentum, calculated
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(a) (b) Muons

(c) Pions (d) Protons

Figure 6.21: Muon identification by momentum reconstruction quality. (a) The frac-
tional difference between MCS and range momenta calculated assuming particle is a muon
for all track-like particles. (b), (c) and (d) The relationship between the fractional dif-
ference and the track length. The top green line indicates the exponential function of
Equation 6.7 used to remove particles whose calculated momenta do not agree.

assuming particle is a muon, for other particles were less likely to agree, as can be seen

in Figure 6.21. An exponential function of the form

(
PMCS − P range

)
/P range = A+ exp(−(L−B)/C) (6.7)

was used to remove tracks based on the maximum fractional momentum difference as a

function of track length, L. A, B and C were values determined from simulation as 0.5,

15, and 30 respectively.
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Table 6.3: The number of contained muons, charged pions and protons remaining af-
ter selection criteria for a sample of neutrino interaction in the TPC with no external
backgrounds. These figures are for a separate sample of BNB neutrino interactions in the
TPC (1.06×1019 POT) and not scaled to 6.6×1020 POT.

µ π p

Track in ν slice 44223 7014 31187

Contained 22004 (49.8%) 6069 (86.5%) 29033 (93.1%)

Individual criteria

Proton ID 30 (0.136%) 36 (0.593%) 18504 (63.7%)

Low scattering 699 (3.18%) 2332 (38.4%) 20162 (69.4%)

No Stopping χ2 2107 (9.58%) 2838 (46.8%) 7318 (25.2%)

< 25 cm 849 (3.86%) 2155 (35.5%) 17645 (60.8%)

Momentum quality 1181 (5.37%) 2782 (45.8%) 21970 (75.7%)

Combined

Total removed 3232 (14.7%) 4258 (70.2%) 27549 (94.9%)

6.4.6 Contained muon selection

In the situation where all particle tracks reconstructed in a neutrino slice are contained, all

of the criteria described above were applied to reject as much pion and proton background

as possible. The effects of the different criteria on the numbers of primary particles from

neutrino interactions in the active volume are summarised in Table 6.3.

Unlike for the cosmic identification, the application of MVAs would be appropriate here

and would likely give a significant improvement in particle identification performance.

The criteria here were sufficient for this inclusive analysis due to the relative abundance

of muons and high external background rejection. When measuring exclusive channels,

using these indicative features as input to an MVA should enhance the selection efficiency.

Promising results were obtained using deep learning, by training a convolutional neural

network on the reconstructed objects, but the studies were too preliminary to include in

this analysis.
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(a) (b)

Figure 6.22: (a) Length of particles which exit the active volume and start in the fiducial
volume. (b) The effect of a minimum length removal on the percentage of exiting particles
selected.

Table 6.4: The number of exiting muons, charged pions and protons remaining after
fiducial volume and minimum length requirements.

µ π p

Track in ν slice 44223 7014 31187

Exit 22219 (50.2%) 945 (13.5%) 2154 (6.91%)

Exit (fiducial) 16376 (37%) 433 (6.17%) 609 (1.95%)

Length > 50 cm 14724 (89.9%) 243 (56.1%) 354 (58.1%)

6.4.7 Exiting muon selection

For cases where one track exits the TPC, the selection criteria for that track must be

defined. The length distribution of particles starting inside the fiducial volume and exiting

was studied in order to choose the minimum length that an exiting track must be to be

called a muon, Figure 6.22.

As can be seen from Table 6.4, the relative numbers of charged pions and protons which

start in the fiducial volume and exit the active volume are expected to be so low that

their contribution does not warrant a selection criteria. The only selection consideration

was then the quality of the muon track kinematic reconstruction. A minimum length of

50 cm was used to ensure that the fractional momentum resolution was better than 20%.
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(a) (b)

Figure 6.23: Track-like particle selection efficiencies for (a) contained and (b) exiting
muon selection criteria as a function of true momentum. The efficiencies are defined for
particles with an interaction vertex inside the fiducial volume.

6.4.8 Selection summary

The selection efficiencies for individual track-like particles from neutrino interactions are

shown in Figure 6.23 as a function of true momentum for contained and exiting particles.

The overall process for selecting νµ CC slices after cosmic identification was as follows:

• Vertex contained in the fiducial volume:

– -190 cm < X < -5 cm and 5 cm < X < 190 cm.

– -190 cm < Y < 180 cm.

– 15 cm < Z < 247.5 cm and 252.5 cm < Z < 450 cm.

• Don’t apply criteria to any tracks longer than 100 cm.

• Reject any contained tracks which:

– Have a χ2 consistent with the proton hypothesis.

– Do not have a stopping Bragg peak, defined as having a χ2 ratio < 1.2.

– Do not scatter like muons, average DCA < 0.2 or average MCS angle < 30

degrees.

– Have (PMCS − P range)/P range as a function of reconstructed length, L, above

0.5 + exp(−(L− 15)/30).
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– Are shorter than 25 cm.

• Count the number of escaping tracks.

• Case 1: All tracks contained.

– Select longest non-rejected track as muon.

• Case 2: 1 track escapes.

– If the escaping track is the longest track and has a length > 50 cm, select as

muon.

– Otherwise reject slice.

• Case 3: More than 1 track escapes.

– Reject slice.

6.5 Selected distributions

The expected one dimensional rate distributions for the νµ CC inclusive selection are

shown in Figure 6.24. As a fiducial volume was defined, true νµ CC interactions with

a vertex outside of the fiducial volume were labelled as a background, as well as the

intrinsic background from ν̄µ CC. Distributions for the muon momentum, Pµ, and angle

to the neutrino beam, cos θµ, as used previously are shown along with other kinematic

variables applicable to an inclusive measurement. These are:

• Length: The reconstructed length of the track selected as the muon.

• φµ: The angle of the muon track around the beam direction.

• Visible energy (Evis): The energy of the muon track
(√

P 2
µ +m2

µ

)
+ the calori-

metric energy of any other reconstructed track and shower objects associated to the

neutrino slice.
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• Number of secondary tracks: The number of track objects associated to the

neutrino slice excluding the track identified as the muon.

• Effective inelasticity: (Evis − Eµ)/Evis

6.6 Performance

To evaluate the performance of the selection the efficiency was defined as

E =
N
νµCC
selected

N
νµCC
generated

(6.8)

where N
νµCC
generated is the number of simulated νµ CC interactions with a vertex in the fiducial

volume and N
νµCC
selected is the number of those events reconstructed as neutrino slices and

selected. The purity was defined as

P =
N
νµCC
selected

Nall
selected

(6.9)

where Nall
selected is the total number of selected slices.

After reconstruction, cosmic background removal, fiducial volume and selection criteria

the overall purity of the νµ CC sample was predicted to be 90% and the total efficiency

for selecting events in the fiducial volume was predicted to be 67%. The efficiency and

purity as a function of the muon momentum and cos θ are shown in Figures 6.25 and 6.26.

For true νµ CC interactions in the selected sample the primary muon was correctly

selected 96% of the time, as shown in Figure 6.27.

The efficiencies for keeping νµ CC events in the fiducial volume through the reconstruc-

tion and selection stages are given in Table 6.5. The total numbers of signal events relative

to the backgrounds are given in Table 6.6.

- 140 -



Chapter 6. Event selection

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.24: Selected νµ CC distributions scaled to 6.6×1020 for (a) muon momentum,
(b) muon cos θ, (c) muon track length, (d) muon φ, (e) visible energy, (f) number of
secondary tracks, and (g) effective inelasticity.
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(a) (b)

(c)

Figure 6.25: νµ CC selection efficiency as a function of true (a) Pµ, (b) cos θµ and (c)
both. The efficiency drops off at low momentum because short tracks are often recon-
structed as showers or not reconstructed.

(a) (b)

Figure 6.26: νµ CC selection purity as a function of reconstructed (a) Pµ and (b) cos θµ.
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(a) (b)

Figure 6.27: νµ CC muon selection efficiency as a function of reconstructed (a) Pµ and
(b) cos θµ.

Table 6.5: νµ CC efficiencies for interactions in the fiducial volume for all reconstruction
and selection stages evaluated for the sample of neutrino events (5.27×1018 POT) without
scaling.

Stage Number of νµ CC Efficiency (%)

Truth 24504 100

Pandora 22728 92.8

Cosmic ID 20903 85.3

Selection 16509 67.4

Table 6.6: Reconstruction and selection summary for νµ CC and the main sources of
backgrounds evaluated for all samples and scaled to 6.6×1020 POT.

Stage νµ CC Other ν Dirt Cosmic Off-beam

Pandora 3.41×106 5.24×105 1.81×106 7.44×106 5.12×106

Cosmic ID 3.03×106 4.55×105 7.31×105 9.33×104 1.59×105

Fiducial volume 2.37×106 3.66×105 9.5×104 5.34×104 1.03×105

Selection 1.93×106 5.82×104 4.07×104 2.88×104 5.66×104
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Cross section analysis

In this chapter, the sensitivity of SBND in measuring neutrino-argon cross sections will

be explored based on the selection developed in the previous chapter. Section 7.1 de-

scribes the process of transforming measured rates to cross sections. Section 7.2 describes

the implementation of a closure test on the fully simulated interactions in the detector,

calculating the cross section and comparing it with Monte Carlo simulations from the

same generator tune. Section 7.3 outlines a method of parametrising the reconstruction

and selection in order to estimate the performance with a much larger sample. Section

7.4 evaluates the systematic uncertainties that would contribute to a measurement of

the cross section. Section 7.6 explores how well SBND would perform in a comparison

between different cross section models using the inclusive channel.

7.1 Rate to cross section

The total rate, N , measured by the detector can be transformed into a flux-integrated

cross section using

σ =
N −B
ε · nT · Φ

(7.1)

where B is the expected number of background interactions selected, ε is the efficiency

of selecting νµ CC interactions, nT is the total number of target nucleons and Φ is the

integrated flux.
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The rate is directly measured by the detector and has no uncertainty, other than the

statistical uncertainty associated with the probability of observing the same results given

repeated measurements. The expected background, B, depends both on the flux and

cross section model and the Φ is dependent on the flux model. ε must be estimated

from simulations and so it is also dependent on the flux and cross section model as it is

integrated over the kinematic variables. Many aspects of the flux and cross section model

can affect the rate predictions in similar ways, making the interplay between all of these

different effects highly non-trivial.

It will be possible to measure differential inclusive cross sections with low statistical

uncertainty due to the expected rate of νµ interactions. The differential cross sections in

true Pµ and cos θµ bins are given by

(
dσ

dPµ

)
i

=

∑
j Uij(Nj −Bj)

εi · nT · Φ · (∆Pµ)i
(7.2)

(
dσ

d cos θµ

)
i

=

∑
j Uij(Nj −Bj)

εi · nT · Φ · (∆ cos θµ)i
(7.3)

where (∆Pµ)i and (∆ cos θµ)i are the bin widths, εi is the efficiency in bin i and Uij is the

unfolding matrix that transforms between reconstructed and true bins.

The double differential cross section follows a similar form,

(
d2σ

dPµd cos θµ

)
i

=

∑
j Uij(Nj −Bj)

εi · nT · Φ · (∆Pµ)i · (∆ cos θµ)i
(7.4)

where i is now the linearised two dimensional Pµ and cos θµ bin and everything else has

the same meaning.

7.1.1 Background subtraction

To obtain the rate of νµ CC events observed in the detector, the predicted rate of other

neutrino, dirt and cosmic interactions must be subtracted. Simulations and control sam-

ples will be used to predict the expected rate of other neutrino and dirt interactions

selected. Uncertainties in the flux normalisation and shape, the geometric models of the
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detector and surroundings used in Geant4 and the cross section models will all contribute

to systematic uncertainties in the prediction.

There will be statistical uncertainties on the prediction due to finite Monte Carlo statis-

tics. These can be neglected by using a Monte Carlo simulation much larger than the

expected rate and scaling down. There will, however, be statistical uncertainties associ-

ated with the true number of background events in the data that cannot be neglected.

The rate of cosmic ray muon interactions from in-time cosmic induced triggers will be

estimated by taking data with a fake beam trigger. The full reconstruction and selection

chain can be applied to the sample and then it can be scaled to the POT of the data

sample, like the process used in Section 6.1.1.

The rate of cosmic interactions from neutrino induced triggers will be estimated by over-

laying data taken without a beam trigger on simulated neutrino events and then running

the reconstruction and selection on these hybrid events. It is possible that systematic

uncertainties will occur due to differences in run conditions between taking cosmic and

neutrino data but they are difficult to estimate without data. As with the neutrino and

dirt background, there will be statistical uncertainties associated with the rate of cosmic

interactions in the data.

7.1.2 Normalisation

The selection efficiency can be estimated by

ε =
N selected

N simulated
(7.5)

where N simulated is the number of νµ CC interactions simulated in the fiducial volume and

N selected is the number of these interactions selected. The εi in Equations 7.2, 7.3 and 7.4

refer to the specific kinematic bin i that the interaction is generated in.

The number of target nucleons is given by

nT =
NA · ρAr · VAr · nN

MN

(7.6)
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Figure 7.1: The BNB muon neutrino flux prediction at SBND as a function of neutrino
energy. This distribution was integrated over all energies to give the total neutrino flux
at full exposure.

where NA is the Avogadro number, ρAr is the density of argon at 88 K [138], VAr is the

volume of argon contained in the fiducial volume, nN is the average number of nucleons

per argon nucleus and MN is the mass of one mole of argon [138]. For the fiducial volume

given in Section 6.3, nT is estimated to be

nT =
6.022× 1023[Ar/mol] · 1.3973[g/cm3] · 5.89× 107[cm3] · 40[N/Ar]

39.95[g/mol]
= 4.96× 1031.

The integrated flux of muon neutrinos, Φ, is estimated by multiplying the number of

POT by the integrated neutrino flux distribution calculated from beam simulations [105],

Figure 7.1. The integrated νµ flux for 6.6×1020 POT is predicted to be 1.30×1013 cm−2.

7.1.3 Unfolding and folding

The expected rate histogram ν can be written in terms of the true histogram µ,

ν = R · µ+ β (7.7)

where β is the expected background and R = Rij is the response matrix, the probability

to observe an event in bin i given that it was generated in bin j. The response matrix

can be estimated from simulations and the unfolding matrix, Uij, is given by inverting

this response matrix.
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The measured rate, N, can be used as an estimator for the expected rate and the true

rate can be estimated with

µ̂ = R−1(N− β) = U(N− β). (7.8)

This is the same as the result that would be obtained by maximising the log-likelihood

function for Poisson data or from the least squares solution [167].

Matrix inversion using a maximum likelihood estimator can introduce large variance in

the unfolded spectrum because statistical fluctuations in the data can be misinterpreted as

fine structure in the true distribution [167]. Correction factors or regularisation methods

are required to reduce the variance, but these introduce a bias [167]. There are several

methods of regularised unfolding commonly used in particle physics, for example [178–

180].

Given that the primary use of the measured cross section data in SBND will be to

improve theoretical cross section models there is no firm requirement for the data to be

unfolded. If the response matrix is provided with the data, a theoretical prediction can

be folded into reconstructed kinematic variable space. It is then easier to construct a test

statistic and test the model hypothesis without having to account for the additional bias

and variance introduced by unfolding [167].

Folding allows us to drop the unfolding matrix Uij in Equations 7.2, 7.3 and 7.4. In

order to preserve the overall normalisation of the differential cross sections the efficiency

must be modified to become a function of the reconstructed bins,

εi → ζi =

∑
j RijN

selected
j∑

j RijN true
j

(7.9)

where the N have the same meanings as in Equation 7.5 and the response matrix, Rij

is calculated for all reconstructed events. The folded single and double differential cross

sections become (
dσ

dP reco
µ

)
i

=
Ni −Bi

ζi · nT · Φ · (∆P reco
µ )i

, (7.10)
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(
dσ

d cos θrecoµ

)
i

=
Ni −Bi

ζi · nT · Φ · (∆ cos θrecoµ )i
, (7.11)

(
d2σ

dP reco
µ d cos θrecoµ

)
i

=
Ni −Bi

ζi · nT · Φ · (∆P reco
µ )i · (∆ cos θrecoµ )i

. (7.12)

It is expected that SBND will publish its cross section results in both folded and unfolded

forms to maximise the usefulness of the data in comparing to past data and future models.

As the goal of this analysis is to estimate the model testing capabilities of SBND, the

folded cross sections will be calculated. This is because the model separation power is

usually better in reconstructed space [181].

7.2 Closure test

It is important that the analysis method can reliably reproduce the cross section models

input to the simulation. To test this, the fully simulated and reconstructed events were

used as fake data and the folded cross section was calculated. An independent sample

using the same generator configuration was then folded with the calculated response

matrix and compared with the fake data. A hypothesis test was then performed to

determine whether the fake data and model are consistent with one another.

As the fake data was a Monte Carlo simulation, the background subtraction is trivial.

The systematic uncertainties involved when the backgrounds are not known exactly are

discussed in Section 7.4. All plots shown here are for events matched to true νµ CC

interactions in the fiducial volume defined in Section 6.3.

The fully reconstructed statistics were relatively low compared to the expected exposure,

so only single differential cross sections were calculated. The binning was chosen to reduce

the statistical uncertainties in each bin and will not be the same binning used for the full

SBND data sample, this is explored further in Section 7.3. The binning was chosen

such that the statistical uncertainty on each bin was less than 3% to reduce statistical

fluctuations and provide a better visual estimation of closure. The choices of binning for
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(a) (b)

Figure 7.2: The bin definitions for the one dimensional distributions in (a) Pµ and (b)
cos θµ for the fully reconstructed simulations with the percentage statistical uncertainty
shown.

Pµ and cos θµ are shown in Figure 7.2 and the bin edges were

Pµ = [0, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 2],

cos θµ = [−1, − 0.04, 0.28, 0.44, 0.6, 0.68, 0.76, 0.84, 0.92, 1].

The response matrix is defined by

Rij = P (observed in bin i|generated in bin j) =
P (observed in i ∩ generated in j)

P (generated in j)
(7.13)

where the P are probabilities that must be estimated using simulations. If unfolding is

not being performed the truth binning does not have to be the same as the reconstructed

binning, and in an ideal case would be binned in a way that minimises model dependencies

[182].

In the interest of simplicity for the closure test, symmetric response matrices were used.

The response matrix can be estimated by

Rij =
N reco
ij

N true
j

(7.14)

where N reco
ij is the number of events reconstructed in bin i and generated in bin j and N true

j
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(a) (b)

Figure 7.3: Symmetric response matrices for (a) Pµ and (b) cos θµ. They are defined
only for selected events so each true column adds to unity.

(a) (b)

Figure 7.4: Folded differential νµ CC inclusive cross sections in (a) Pµ and (b) cos θµ
with statistical uncertainties for 5.27×1018 POT shown.

is the number of events generated in bin j. The response matrices were only calculated for

selected events as the selection efficiencies were corrected for when calculating the cross

sections, the truth columns are therefore normalised to unity. The response matrices for

Pµ and cos θµ are shown in Figure 7.3.

The bin efficiencies were estimated using the fake data and Equation 7.9. The number of

targets, Equation 7.6, was the same as for the full analysis as the fiducial volume definition

was the same. The integrated flux was scaled to the simulated POT of 5.27×1018, giving

Φ = 1.04×1011 cm−2. The folded differential cross sections obtained from the fake data

are shown in Figure 7.4 with statistical uncertainties.

This is the general process that would be undertaken with data, but the Monte Carlo
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(a) (b)

Figure 7.5: Fake data differential cross sections in (a) Pµ and (b) cos θµ with alternative
model overlays. Gv3: GENIE v3.0.6 G18.10a.02.11a:k250:e1000. Gv2: GENIE v2.12.10
DefaultPlusMECWithNC.

sample would be much larger to reduce the statistical uncertainties in the response matrix,

efficiency and background predictions which are of the same order as the uncertainties on

the cross section predictions. In order to then compare cross section models, Monte Carlo

generators will be used to predict differential cross sections in true kinematic variables

using the predicted flux and detector model. The response matrices will applied to the

predictions to map the true variables to reconstructed bins.

Figure 7.5 shows the fake data cross section with two folded cross section models overlaid,

one corresponding to the GENIE version 3.0.6 model configuration used to generate the

data, Gv3, and one corresponding to a different configuration of models in GENIE version

2.12.10, Gv2 [91]. The model configurations for GENIE v3 can be found in Table 5.1 and

the model configurations for GENIE v2 are discussed later in Table 7.9.

The consistency of the fully reconstructed simulations with the folded predictions can

be tested with a χ2 statistic, assuming only statistical uncertainties,

χ2 =
N∑
i

(
di − µi
σi

)2

(7.15)

where di is the measured cross section in bin i, µi is the model prediction and σi is the

associated statistical uncertainty. The χ2/ndof ≈ 1 is a commonly used metric for the

goodness-of-fit but is a little obscure when examining the compatibility of a hypothesis

with data.
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Figure 7.6: The expected χ2 distribution for the νµ CC inclusive differential cross section
in momentum with the measured universe shown as the black dashed line.

Table 7.1: P values from χ2 test for closure test comparisons between GENIE model
configurations. GENIE version 3 (Gv3) was used to generate the fake data.

χ2 ndof p value

Gv3: Pµ 3.71 7 0.88

Gv3: cos θµ 3.18 8 0.96

Gv2: Pµ 3270.85 7 0

Gv2: cos θµ 3543.26 8 0

The quantity in Equation 7.15 is a function of the Gaussian distributed random variable

di and is itself a random variable with an underlying χ2 distribution with an expectation

value equal to the number of degrees of freedom [167]. It is therefore possible to ask what

the probability of obtaining an experimental χ2 result more extreme than (further into

the tail of the distribution) or equal to the measured value, called the p value [167]. This

can be calculated either analytically or through Monte Carlo simulations.

The GENIE v3 p value calculation for the differential cross section in momentum is

shown in Figure 7.6. The results of the χ2 test for both models are given in Table 7.1.

When only statistical uncertainties are included, the fake data is consistent with the model

used to generate it and there appear to be no significant errors or biases in the analysis

method.
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Figure 7.7: The types of particles selected as the primary muon in νµ CC inclusive
interactions from neutrino interactions inside the active volume.

7.3 Expected rate at full exposure

The closure test in the previous section is a useful method of identifying errors in the

analysis process but it is not representative of the true capabilities of SBND as the samples

used were statistically limited. Taking this small sample and scaling up to the expected

POT would magnify statistical fluctuations to an unacceptable level. It was, however,

possible to avoid the computing and storage constraints by only simulating the initial

neutrino interactions and the subsequent trajectories of the particles in the detector,

allowing for much higher statistics. A model of the detector response, reconstruction and

selection was then used to transform to reconstructed space.

7.3.1 Track-like particle reconstruction

The smaller sample of fully simulated and reconstructed events was used to parametrise

the reconstruction and selection performance in terms of individual particles in a way

that was designed to minimise model dependencies. The simplicity of the νµ CC inclusive

interaction topology makes this parametrisation method viable as only track-like particles

have a non-negligible contribution to the selected muon distribution, as can be seen in

Figure 7.7.

Figure 7.8 shows that there is no strong dependence of the reconstruction and cosmic

identification efficiency on the true track multiplicity of the event. This motivated the
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Figure 7.8: The reconstruction efficiency as a function of the true particle multiplicity
for true νµ CC events. The multiplicity was defined as the number of track-like particles,
excluding the muon, with an energy greater than 10 MeV.

assumption that the track-like particles in neutrino interactions can be treated indepen-

dently when parametrising the reconstruction, greatly reducing the amount of phase space

that needed to be covered.

The reconstruction was parametrised in terms of the contained length and the angle

to the beam as the efficiency had the strongest dependency on these kinematic variables

and there were insufficient statistics for three dimensional binning. Figure 7.9 shows the

binning used for each particle type. The efficiency was applied to the particle trajecto-

ries by determining the contained length and angle, retrieving the binned efficiency, and

reconstructing the particle if a random number was below this efficiency.

7.3.2 Cosmic identification

Only a small proportion of the neutrino interactions that passed both fiducial volume

and muon selection criteria were removed by cosmic identification. Figure 7.10 shows

that there was only a slight kinematic dependence for either νµ CC and other types of

neutrino events. A flat 10% inefficiency for νµ CC and a 15% inefficiency for other neutrino

interactions was applied.
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(a) Muons (b) Pions

(c) Protons

Figure 7.9: The reconstruction efficiency (%/100) for track-like particles binned in con-
tained length and θ. The efficiency in the length overflow bins was assumed to be 100%.

(a) νµCC (b) Other ν

Figure 7.10: Cosmic identification survival as a function of neutrino energy for recon-
structed neutrino interactions that passed the selection criteria and had a vertex within
the fiducial volume.
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Figure 7.11: Muon identification efficiency for track-like particles after length and pro-
ton identification criteria as a function of particle momentum. Particles were treated
independently when applying the selection criteria.

7.3.3 Primary muon selection

After a reconstruction and cosmic identification efficiencies, the fiducial volume and length

criteria, defined in Sections 6.3 and 6.4, were applied to the true particle trajectories under

the assumption that the track length and angle reconstruction performs well. The proton

identification efficiency as a function of momentum, Figure 6.16a, was then applied.

The probability of selecting a contained track-like particle as a muon using the process

defined in Section 6.4 was parametrised in terms of the particle momentum, shown in

Figure 7.11. The longest track identified as a muon was then selected as a primary muon

if all tracks were contained. As in Section 6.4, if only one track in a neutrino interaction

exited the TPC and had a contained length greater than 50 cm it was selected.

7.3.4 Kinematic variable smearing

The relevant kinematic variables for particles which pass the parametrised reconstruction

and selection were then smeared. The angle of particles with respect to the beam was left

unsmeared due to the expected quality of track reconstruction, Figure 5.13.

For contained muons, the dominant source of uncertainty in the range momentum

method is the irreducible uncertainty from straggling at around 3% [183]. As strag-

gling was simulated in this event sample, the true range was used with the same range-

momentum lookup table as in the standard reconstruction. For exiting muons, the frac-
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(a)

(b) (c)

Figure 7.12: Fractional bias and resolution of the MCS based momentum estimation as
a function of track length for exiting muons from νµ CC interactions in the TPC.

tional bias and resolution of the MCS method were parametrised in terms of contained

track length, shown in Figure 7.12, and used to smear the true momentum.

7.3.5 Efficiency comparison

The efficiency of selecting νµ CC interactions in the fiducial volume was then directly

compared to the efficiency obtained through full reconstruction to check that this method

was likely to provide a reasonable approximation of the current reconstruction and se-

lection performance. The efficiencies in both muon momentum and cos θ are shown in

Figure 7.13. The overall agreement is reasonable, with some deviations in regions with

higher statistical uncertainty. This is not unexpected given the binning used.
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(a) (b)

Figure 7.13: Full and parametrised reconstruction efficiency as a function of (a) Pµ and
(b) cos θµ. The dip is not reproduced by the parametrised reconstruction as the binning
in this region is too large with the current statistics.

7.3.6 External background rates

External backgrounds are more difficult to predict with this method of parametrising the

reconstruction as their contributions to the selected distributions tend to arise from the

reconstruction failing in unpredictable ways. This cannot be modelled precisely on an

event by event basis. The expected background rates at full exposure were estimated in

Section 6.1.1. The contribution from external backgrounds was assumed to already be

subtracted from the measured rate in the distributions provided in the next section and

the uncertainties from this subtraction will be explored in Section 7.4.

7.3.7 Expected rate distributions

With the parametrised selection and reconstruction it was possible to compare the ex-

pected reconstructed rates for different models in the detector. Here, the interaction rates

of selected νµ CC interactions with the full expected POT as predicted by GENIE v3 are

shown in reconstructed muon momentum and cos θ, Figure 7.14.

The choice of binning took into account both the statistics per bin and the measurement

resolution of the kinematic variables to minimise bin migration. The minimum bin width

for cos θ was set as 0.08 and for momentum it was set to 100 MeV. To account for bins

with low statistics bin edges were removed until the statistical uncertainty on each bin
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(a) (b)

(c) (d)

Figure 7.14: 1D rate distributions in reconstructed (a)&(c) Pµ and (b)&(d) cos θµ with
statistical uncertainties displayed as a percentage of the bin contents. (a)&(b) show the
distributions broken down by the true interaction type and (c)&(d) show the contribution
from each final state topology.

was less than 1%.

A similar process was used for the two dimensional binning with the proviso that it

be possible to slice the two dimensional histogram in one of the variables. The one

dimensional projections were first binned with a maximum statistical uncertainty of 0.34%

using the same minimum bin widths. The lower statistical uncertainty was used to ensure

the binning was not too fine in one dimension. One variable was chosen to slice in and

for each slice the other variable was rebinned with a maximum uncertainty of 1%. Figure

7.15 shows the result of this process with the momentum chosen as the slicing variable.
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Figure 7.15: Two dimensional rate distribution in reconstructed Pµ and cos θµ. The
momentum binning was constant in cos θ so that slices could be easily extracted, the
cos θµ binning was varied for every momentum bin.

7.4 Systematic uncertainties

As can be seen in Figure 7.14, the full statistics of νµ CC interactions results in small

statistical uncertainties. However, the systematic uncertainties in the cross section model,

flux, and detector response must be considered when presenting a cross section measure-

ment and using the data to compare between different models. It is difficult to perform

a comprehensive study of all of the possible systematic effects without data being avail-

able. Nevertheless, it was possible to use the event rate prediction tool presented above

to estimate the main sources of uncertainty we would expect given a specific model con-

figuration.

For brevity, only the one-dimensional distributions will be shown when evaluating the

individual sources of systematic uncertainty. The total covariance and correlation matrices

for all distributions are shown in Section 7.4.6.

- 161 -



Chapter 7. Cross section analysis

7.4.1 Reweighting

When evaluating the flux and cross section modelling, it is possible to estimate the ef-

fect of systematic changes to physics parameters on the expected measurements without

producing hundreds of varied simulations. One large sample can be simulated with the

most probable parameter values and then variations can be propagated to weights that

can be applied to individual neutrino interactions, in a process called reweighting [91].

Each parameter modification is referred to as a toy universe, and the same parameter

modification must be applied to all events within that universe.

Reweighting takes advantage of the properties of Monte Carlo generators discussed in

Section 5.1.1, specifically that events are generated randomly and then kept based on a

probability calculated by the cross section model. Each event is given a weight propor-

tional to its probability of occurring. If the model parameters are changed, the probability

of the event occurring is also often different and so its weight can be modified without

having to regenerate new events [184].

One of the caveats of this is that the sample that is reweighted must be sufficiently

large enough to cover the entire possible phase space. Reweighting cannot be used to

generate events with different kinematic variables to those simulated. For this reason,

reweighting was not used for the smaller fully reconstructed sample as it may have resulted

in misleading uncertainties.

An event reweighting framework that was first developed by MiniBooNE and then

adapted for use in a LArTPC by MicroBooNE was used to reweight both the flux and

GENIE parameters. The framework acts as an interface to the native GENIE reweighting

tools [91].

7.4.2 Flux

One of the benefits of using the same neutrino beam as other experiments, namely Mini-

BooNE and MicroBooNE, is that detailed studies of the neutrino flux and associated

uncertainties have been performed [105, 136]. As described by the MicroBooNE collabo-
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ration in [136] there are a number of different uncertainties that contribute to the overall

flux uncertainty. These were all re-evaluated for the SBND flux.

A summary of the parameters that were varied in the flux reweighting is given in Table

7.2. The different parameters were:

• Horn current: The magnetic focusing horn is pulsed with a current in sync with

proton delivery, this current has some variation around the central value of 174 kA

[105].

• Skin depth: The skin effect results in some of the pulsed current in the horn

penetrating the conductive surface. This causes electromagnetic currents within

the conductor and can lead to large uncertainties at high neutrino energies. The

effect was modelled as an exponential decay of current density to a depth of 1.4 mm

[105].

• σπ+ , σπ− : Pion production cross section uncertainties.

• σK+ , σK0 , σK− : Kaon production cross section uncertainties.

• σπinel, σπQE, σπtotal: Pion-beryllium/aluminium inelastic scattering, QE scattering

and total cross section uncertainties. Beryllium is the material of the target and the

horn is mostly composed of aluminium.

• σNinel, σNQE, σNtotal: Nucleon-beryllium/aluminium inelastic scattering, QE scatter-

ing and total cross section uncertainties.

• POT: Uncertainty on the delivery of protons in each spill.

The method used to originally determine the simulated flux model parameters often

determined how the parameters were reweighted, there were several different reweighting

methods used:

• Flux Unisim (FU): Physics parameters were varied around their central values in

different universes using either a Gaussian distribution or single values at ± 1σ, the

new parameters were then used to recalculate event weights.

- 163 -



Chapter 7. Cross section analysis

Table 7.2: Flux reweighting parameters varied in the systematic uncertainty estimation.
The pion production uncertainties contribute to the inclusive muon channel the most, as
can be seen in Table 3.2.

Parameter Method Uncertainty

Horn current FU ±1 kA

Skin depth FU On/Off

σπ+ CSV [105]

σπ− CSV [105]

σK+ FS [105]

σK0 SW [105]

σK− N 100%

σπinel (Be/Al) FU ±10/±20 mb

σπQE (Be/Al) FU ±11.2/±25.9 mb

σπtotal (Be/Al) FU ±11.9/±28.7 mb

σNinel (Be/Al) FU ±5/±10 mb

σNQE (Be/Al) FU ±20/±45 mb

σNtotal (Be/Al) FU ±15/±25 mb

POT N 2% [136]

• Central spline variation (CSV): Ratios of the central value prediction to varied

spline fits of the smeared pion cross section data were used to generate weights for

interactions, this was applied based on the parent particle of the neutrino [105].

• Feynman scaling (FS): Kaon cross section measurements were extrapolated to

regions where there is little experimental data using Feynman scaling [134]. The

coefficients used in the scaling were varied within their correlated uncertainties and

then the cross section was recalculated to generate a new weight.

• Sanford Wang (SW): Parameters in Sanford Wang fit to data were smeared and

new cross sections are recalculated to give event weights [105].

• Normalisation (N): A normalisation uncertainty was applied to a process and

propagated to event weights.

For each parameter, 100 different universes were generated with the variations dis-

tributed according to the methods in Table 7.2. Every neutrino interaction was given a

weight in every universe, if the parameter variation did not change then the interaction
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probability weight was one. The flux simulation parameters are uncorrelated with one

another and so to estimate the overall flux uncertainty it was possible to take the product

of the weights within each universe. A new rate histogram was filled for each universe and

the standard deviation of the bin contents across all universes was used as the systematic

uncertainty for that bin. The flux systematic uncertainties can be seen in Figure 7.16.

To study the variance of the bin values in relation to other bins with flux parameter

variations, a covariance matrix was constructed. For the rate predictions, the covariance

matrix is given by

Covij =
1

U

U∑
n=1

(Nn
i −N cv

i )
(
Nn
j −N cv

j

)
(7.16)

where U is the number of reweighting universes simulated, Nn
i is the predicted rate in bin

i and N cv
i is the central value in bin i.

It is often more visually interpretable to show the correlation matrix, the covariance

matrix of the bin contents normalised by the standard deviation of the bins, defined as

Corrij =
Covij√

Covii
√
Covjj

=
Covij
σiσj

(7.17)

where σi =
√
Covii is the standard deviation of bin i. The correlation matrix for the flux

systematic uncertainties can be seen in Figure 7.16.

7.4.3 GENIE

The GENIE generator provides a package for performing event reweighting [91] which

contains tools for modifying and propagating uncertainties in cross section models, rescat-

tering, hadronisation and decays. A physics parameter, P , which may be a single quantity

or a function, can be modified by a Gaussian distributed multiplier, xP , to the standard

deviation of that parameter, σP , so that

P → P ′ = P
(

1 + xP ×
σP
P

)
. (7.18)
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(a)

(b)

(c)

Figure 7.16: The contribution of the flux systematic uncertainties to the total rate
distributions and corresponding bin correlation matrices for (a) true neutrino energy, (b)
reconstructed Pµ and (c) reconstructed cos θµ. The peak flux uncertainty is smaller than
the total uncertainty in Table 3.2 as the large low energy uncertainties do not contribute
to the rate uncertainty due to the small interaction cross sections in this region.
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Table 7.3: GENIE cross section reweighting parameters. Table adapted from [91]. The
uncertainties on the axial mass for CCQE contribute most to the inclusive sample as it
is dominated be CCQE interactions, as can be seen in Figure 7.14.

xP Description σP/P

xMNCEL
A

Axial mass for NC elastic ±25%

xηNCEL Strange axial form factor η for NC elastic ±30%

xMCCQE
A

Axial mass for CCQE -15%+25%

xCCQE−PauliSup CCQE Pauli Suppression ±35%

xMCCRES
A

Axial mass for CCRES ±20%

xMCCRES
V

Vector mass for CCRES ±10%

xMNCRES
A

Axial mass for NCRES ±20%

xMCCRES
V

Vector mass for NCRES ±10%

xMCOH
A

Axial mass for CC and NC COH ±50%

xRCOH0
π absorption in RS model ±10%

xRνp,CC1π
bkg

Non-resonance background in νp CC1π reactions ±50%

xRνp,CC2π
bkg

Non-resonance background in νp CC2π reactions ±50%

xRνn,CC1π
bkg

Non-resonance background in νn CC1π reactions ±50%

xRνn,CC2π
bkg

Non-resonance background in νn CC2π reactions ±50%

xRνp,NC1π
bkg

Non-resonance background in νp NC1π reactions ±50%

xRνp,NC2π
bkg

Non-resonance background in νp NC2π reactions ±50%

xRνn,NC1π
bkg

Non-resonance background in νn NC1π reactions ±50%

xRνn,NC2π
bkg

Non-resonance background in νn NC2π reactions ±50%

The physics parameters that were varied in this analysis are summarised in Tables 7.3,

7.4, and 7.5.

Given the large number of parameters in the comprehensive model built by GENIE and

the inclusion of more theoretically motivated models that may not lend themselves to

reweighting, the parameters in the tables above do not cover all of the possible uncer-

tainties. While these parameter variations do not represent the full cross section model

systematic uncertainty, the included modifications should provide a reasonable approxi-

mation for the CC inclusive channel.

The GENIE systematic uncertainties were all varied together over 100 universes and

propagated to weights [91]. The process for obtaining the uncertainties from the universe
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Table 7.4: GENIE rescattering reweighting parameters. Table adapted from [91].

xP Description σP/P

xNmfp Nucleon mean free path ±20%

xNcex Nucleon charge exchange probability ±50%

xNinel Nucleon inelastic reaction probability ±40%

xNabs Nucleon absorption probability ±20%

xNπ Nucleon pion production probability ±20%

xπmfp Pion mean free path ±20%

xπcex Pion charge exchange probability ±50%

xπinel Pion inelastic reaction probability ±40%

xπabs Pion absorption probability ±20%

xππ Pion pion production probability ±20%

Table 7.5: GENIE hadronisation and decay reweighting parameters. The blank σP/P
refers to parameter variations that cannot be expressed as a single number. Table adapted
from [91].

xP Description σP/P

xpT1π
AGKY Pion transverse momentum for Nπ states in AGKY -

xpF1π
AGKY Pion Feynman x for Nπ states in AGKY -

xfz Hadron formation zone ±50%

x∆→πN
θπ

Pion angular distribution in ∆→ πN -

xR→X+1γ
BR Branching ratio for radiative resonance decays ±50%
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variations was the same as for the flux, shown in Figure 7.17.

7.4.4 Detector

There will be a number of uncertainties in the modelling of the detector response that

contribute to systematic uncertainties on a cross section measurement. Event reweighting

is not appropriate here as the detector modelling does not change the probability of an

interaction occurring.

The uncertainties will be evaluated by producing multiple full simulations with modifi-

cations to detector simulation parameters and with the same neutrino interaction inputs.

The entire reconstruction and analysis chain will be run on the modified universes and the

cross section bins compared between simulations. This is a time and resource expensive

process that is only worthwhile when confident that the detector is well modelled and the

uncertainties understood.

The main predicted sources of uncertainty are discussed below and the work of Chapter

4 was used to inform predictions on how these uncertainties may propagate to the CC

inclusive measurement.

There are several ways that variations in detector performance and physics may affect

measurements. Firstly, entire neutrino interactions may or may not be reconstructed,

predominantly at low energy, this could affect both the shape and normalisation of the

measured distributions. Secondly, the performance of external and internal background

reconstruction may be affected, also changing the shape and normalisation of measured

distributions if not accounted for by control samples. Thirdly, differences in the re-

construction performance may affect the particle identification and the smearing of the

measured kinematic variables, this can change the shape of measured distributions if

migration between bins is high.

The expected sources of detector uncertainties relevant to this analysis are:

• Space charge: A build up of positive ions will modify the electric field inside the

detector and alter the electron drift [147]. This is not included in this analysis
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(a)

(b)

(c)

Figure 7.17: The contribution of the cross section, rescattering, hadronisation and decay
systematic uncertainties to the total rate distributions and corresponding bin correlation
matrices for (a) true neutrino energy, (b) reconstructed Pµ and (c) reconstructed cos θµ.
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but must be corrected for to get the true particle trajectories. Uncertainties in the

modelling have the potential to modify the observed muon angle and momentum

distributions as well as background predictions.

– Prediction: Electric field decrease from +5% to -2% from cathode to anode.

– Total systematic uncertainty (expected): 1-2%.

• APA gap: The behaviour of drifted electrons around the gap between APAs is not

well defined, they may enter the gap or be detected by wires either side. Provided

that the fiducial volume excludes vertices sufficiently close to the gap the effect on

event reconstruction and muon kinematic measurements should be negligible.

– Prediction: 18 mm gap between APAs.

– Total systematic uncertainty (expected): < 1%.

• Electronics response: The response of the TPC channels to drifted charge [170]

and the PMT and CRT channels to photons will affect the calorimetry and trig-

gering. This will require careful calibration to data as it can be hard to predict

how different components will affect each other until the entire system is in place.

Two dimensional deconvolution will significantly reduce the dominant systematic

uncertainties from dynamic induced charge [170].

– Total systematic uncertainty (expected): 2-3%.

• Diffusion: The time and spatial dependence of the longitudinal and transverse

spread of drifted electron clouds will affect the calorimetry if the spread is on the

order of the wire gaps. The effect is not expected to be large enough to significantly

affect the performance of the track or momentum reconstruction.

– Prediction: 6.82 cm2/s longitudinal and 13.16 cm2/s transverse [146].

– Total systematic uncertainty (expected): < 1%.

• Electron lifetime: As discussed in Section 4.2.1, the purity changes the charge loss

as a function of distance and can affect the calorimetry and track reconstruction.

Provided the electron lifetime is sufficiently high (around 3 ms) and well calibrated
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the inclusive cross section measurements should not be sensitive to slight differences

between data and simulation.

– Prediction: Greater than 10 ms [148].

– Total systematic uncertainty (expected): < 1%.

• APA alignment: A misalignment between two joined APAs has the potential to

break up or alter the trajectory of long muon tracks. It was shown in Section 4.2.3

that we have the ability to measure and correct any misalignment to a high degree

of precision and accuracy.

– Prediction: Translation in x < 0.5 mm, rotation in y < 0.12 degrees.

– Total systematic uncertainty (expected): < 1%.

• Wire continuity: Faulty connections between wires joined across the APA could

reduce sensitivity in areas of the detector altering event rates and kinematic recon-

struction. Provided that any faulty connections are modelled this can be corrected

for with simulations but there will be uncertainties involved. The strategies dis-

cussed in Section 4.1.2 should help to prevent any faults during installation.

– Prediction: All wires continuous, any faults detected and corrected for.

– Total systematic uncertainty (expected): < 1%.

• Wire tension: Significant reductions in tension could alter the measured parti-

cle trajectories or cause electrical shorts between wires, reducing coverage. If the

method outlined in Section 4.1.1 was to be implemented in SBND, the wire tensions

could be continuously monitored during installation and operation.

– Prediction: All wires > 5 N [153].

– Total systematic uncertainty (expected): < 1%.

• Detector system alignment: An accurate mapping of the locations of the TPC,

PDS and CRT relative to each other and the BNB is required. Uncertainties have

the potential to alter the observed neutrino flux away from the prediction and could

affect triggering and cosmic background removal.
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Table 7.6: Detector uncertainty systematic variations predicted based on the current
selection performance and possible contributions from different detector effects. Variations
in efficiency refer to a systematic shift in the the overall efficiency. Variations in resolutions
refer to a percentage change to the binned fractional resolution, e.g. a +5% change to a
50% fractional resolution would be 52.5%.

Quantity Variation

Muon reconstruction efficiency ±4%

Pion reconstruction efficiency ±6%

Proton reconstruction efficiency ±5%

Proton identification efficiency ±5%

Muon selection efficiency ±4%

Pion selection efficiency ±12%

Proton selection efficiency ±8%

MCS momentum fractional resolution ±5%

– Prediction: Relative position of TPC-CRT known within 1 cm, relative po-

sition of TPC-PDS known with 1 mm.

– Total systematic uncertainty (expected): 1-2%.

While it was not possible to test all of these individual effects, the parametrised re-

construction allowed for variations in high level reconstruction performance as a simple

estimator of detector systematics. This should provide an estimate to how robust the

selection is to detector variations although the correlations between them are unlikely to

be representative of actual uncertainties in detector modelling.

The reconstruction, particle identification and kinematic variable measurement perfor-

mances were varied independently over 50 universes according to Table 7.6 in order to

estimate detector modelling uncertainties. It was assumed that there will be a con-

stant 1% uncertainty in the normalisation due to uncertainty in the external background

misidentification rate.

7.4.5 External background subtraction

As the background predictions are subtracted from the total event rate the systematic

uncertainties on those predictions must be considered. In the final measurement, over-
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(a)

(b)

Figure 7.18: The contribution of the parametrised detector systematic uncertainties to
the total rate distributions and corresponding bin correlation matrices for reconstructed
(a) Pµ and (b) cos θµ. The muon reconstruction and selection efficiencies contribute to
the overall systematics the most.
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(a) (b)

Figure 7.19: Scaled cosmic ray muon contributions to one dimensional reconstructed
(a) Pµ and (b) cos θµ rate distributions with statistical and systematic uncertainties.

lays of real cosmic data will be used in the place of simulations and so uncertainties in

the modelling of the cosmic ray interactions should not contribute. There may however

be systematic uncertainties associated to the overlaying process and any difference in

operational conditions between taking the overlaid cosmic data and the beam data.

Cosmic ray interactions were not included in the full POT sample due to memory con-

straints and so the selected kinematic distributions from the fully reconstructed sample

in Chapter 6 were scaled. As with the detector uncertainties, it is difficult to predict

the exact form of the uncertainties and so a conservative 20% uncorrelated uncertainty

on each bin was used. The off-beam and on-beam cosmic ray muon contributions were

treated together, shown in Figure 7.19.

The other external backgrounds will arise from neutrino interactions outside the fiducial

volume and so will be subject to many of the same cross section, flux and detector

systematic uncertainties as the signal events. Dirt interactions were also not included

in the full POT sample and so the uncertainties could not be predicted in the same way,

especially as the reconstructed kinematics are often not correlated with the true kinematics

due to incomplete reconstruction. The selected dirt background estimation from Section

6.5 was scaled to the predicted POT and a constant 50% systematic uncertainty was used

for each bin along with the scaled statistical uncertainty, shown in Figure 7.20.

The reconstructed rate distributions with the predicted statistical and systematic un-

certainties from external background removal are shown in Figure 7.21. The uncertainties
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(a) (b)

Figure 7.20: Scaled dirt contributions to one dimensional reconstructed (a) Pµ and (b)
cos θµ rate distributions with statistical and systematic uncertainties.

(a) (b)

Figure 7.21: Reconstructed Pµ and cos θµ rate distributions with external background
subtraction uncertainties.

were propagated to the rate bins by determining the corresponding background bins from

Figures 7.19 and 7.20. The expected number of background events were scaled by the

relative bin widths and the percentage uncertainties on the bins were used to calcu-

late the uncertainties on the rate bins. This process was also used for two dimensional

measurements but with courser binning, a percentage uncertainty of 0.1% was used for

unpopulated bins.

7.4.6 Summary

The predicted systematic uncertainties on the selected rate of muon neutrino CC inter-

actions with external backgrounds subtracted are presented in Table 7.7. The overall
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Table 7.7: Summary of systematic uncertainties on the expected total rate of recon-
structed and selected νµ CC interactions in the fiducial volume.

Source of uncertainty Percentage

Flux 6.88%

GENIE modelling 10.55%

Detector performance 2.77%

External background subtraction 0.63%

Cosmic misidentification 1.00%

POT counting 2.00%

Total systematic 13.10%

Total statistical 0.06%

Total 13.10%

systematic uncertainty on the total rate prediction given the current analysis strategy

and the GENIE v3 cross section model is expected to be 13.1%.

The total reconstructed and selected event rate predictions and associated systematic

uncertainties that would be expected in SBND given the combination of models in Table

5.1 are shown for one dimensional distributions of Pµ and cos θµ in Figures 7.22 and 7.23.

The two dimensional distribution is shown in Figure 7.24. The response, Equation 7.14,

covariance, Equation 7.16, and correlation, Equation 7.17, matrices associated with each

distribution are also shown.

Table 7.7 demonstrates that the selection procedure is able to reduce the external back-

grounds to such a level that even large uncertainties on the subtraction procedure are

only small contributions to the total uncertainty. Flux and GENIE uncertainties dom-

inate, although, as discussed later in Section 7.6, there are reasons to believe that the

GENIE uncertainties evaluated with this reweighting scheme are inflated. The detector

systematics are small in comparison with the first MicroBooNE cross section paper [125],

the majority of this large uncertainty was from induced charge from other wires [170],

this is significantly reduced by two dimensional deconvolution, bringing the total detector

uncertainty down to the 3% level.
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(a)

(b)

(c) (d)

Figure 7.22: (a) Event rate prediction in Pµ with statistical and systematic uncertainties.
(b) Response matrix for all reconstructed events. (c) & (d) Covariance and correlation
matrices.
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(a)

(b)

(c) (d)

Figure 7.23: (a) Event rate prediction in cos θµ with statistical and systematic uncer-
tainties. (b) Response matrix for all reconstructed events. (c) & (d) Covariance and
correlation matrices.
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(a) (b)

(c) (d)

Figure 7.24: (a) Two dimensional binning scheme. (b) Response matrix prediction for
predicted reconstructed event rate in Pµ and cos θµ. (c) & (d) Covariance and correlation
matrices.
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7.5 Cross section systematics

The systematic uncertainties presented in the previous section are on the total expected

rate in the detector and are not the same as the expected uncertainties on a cross section

measurement. For a rate measurement, the data does not have any associated uncertain-

ties because it has been measured with the true flux, cross section and detector response.

The uncertainties on modelling these components only affect the predictions.

For the cross section measurement, a number of model dependent corrections are made

to the rate and each of these will have an associated uncertainty. If we take, for example,

the flux-integrated inclusive differential cross section in reconstructed momentum from

Equation 7.10 and evaluate the flux systematic uncertainties, in every universe, n, we

have, (
dσ

dP reco
µ

)n
i

=
Ni −Bn

i

ζni · nT · Φn · (∆P reco
µ )i

, (7.19)

where the superscript n denotes a quantity that must be re-evaluated for that universe.

This is also true for the GENIE and detector uncertainties with the exception that Φ does

not change. The measured rate Ni is constant for every universe.

The measure of covariance then becomes

Covij =
1

U

U∑
n=1

((
dσ

dP reco
µ

)n
i

−
(

dσ

dP reco
µ

)cv
i

)((
dσ

dP reco
µ

)n
j

−
(

dσ

dP reco
µ

)cv
j

)
, (7.20)

and the correlation matrix is the same as Equation 7.17.

To predict the systematic uncertainties on a cross section measurement in SBND, the

simulated rate was taken as the fixed measured rate and universe variations were made as

in Section 4.2.1. The cross sections were calculated for each universe and the covariances

and correlations were evaluated. The predicted systematic uncertainties on the cross

section are summarised in Table 7.8. The plots showing the systematic uncertainties on

the single and double differential cross sections are available in Appendix A.

The total systematic uncertainties on the rate prediction and cross section measurement

were similar but the individual contributions differed. In particular, there is a much
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Table 7.8: Summary of the expected systematic uncertainties on a measurement of the
total νµ CC inclusive cross section as predicted by GENIE v3.

Source of uncertainty Percentage

Flux 11.36%

GENIE modelling 0.98%

Detector performance 2.93%

External background subtraction 0.63%

Cosmic misidentification 1.00%

POT counting 2.00%

Total systematic 12.00%

Total statistical 0.05%

Total 12.00%

Figure 7.25: Systematic universe variations to the muon neutrino flux. Large differences
between the pion cross section parametrisation and spline fits at low hadron momentum
correspond to large universe differences at low neutrino energy.

greater flux uncertainty on the cross section measurement due to the integrated flux

normalisation. The cause of this difference was the way the systematic uncertainties were

evaluated for the HARP pion production cross sections [131] used in the beam simulation.

The spline fits at low hadron momentum did not correspond to realistic uncertainties on

the Sanford Wang parametrisation. The large uncertainties are reasonable in the regions

not covered by the HARP data, but the errors on the low energy data do not cover the

parametrisation at all. The νµ flux universe variations demonstrating this effect can be

seen in Figure 7.25.

The Sanford Wang parametrisation underestimates the data at low hadron momentum

and the spline fits do not correspond to realistic uncertainties resulting in the universe
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variations not being centred around the simulated value. This adds an extra bias term to

the covariance matrix which may result in an overly conservative estimation of the uncer-

tainty. This suggests that either the pion cross section predictions or their uncertainties

are unrealistic at low hadron momentum and the simulated central value or spline fits

should be updated for future analyses.

This large uncertainty is reduced when considering the rate prediction as the neutrino-

argon cross section decreases with neutrino energy, limiting the contribution of the large

pion cross section uncertainties. The large integrated flux normalisation uncertainties

suggests that a rate measurement may be better for testing cross section models. The

total GENIE modelling uncertainties are low because of the high purity of the selection but

increase when considering differential cross sections because of the effect of the response

matrix and efficiency predictions.

7.6 Model comparisons

In the current era of precision oscillation measurements, cross section measurements are

used to test the limits of applicability of models in various neutrino energy regimes and

on different nuclear targets. The direct comparisons between models and data can aide

their improvement and the reduction of uncertainties. Furthermore, they can be used to

tune model parameters in areas of disagreement [118]. The ability to compare different

models to our data will be a crucial part of this.

To investigate the sensitivity of SBND to different cross section models, another large

sample of neutrino interactions was generated with the model configuration shown in Table

7.9. These interactions were passed through the parametrised reconstruction and the

systematics were evaluated in the same way. The separation between model predictions

of forward folded, flux integrated cross sections in SBND was investigated, although it is

challenging to make definitive statements on sensitivity in the absence of data.

The two samples, while being produced by the same generator, had significant differences

in the predicted rates, as can be seen in Figure 7.26. GENIE v2 predicted a higher overall
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Table 7.9: Cross section models used in GENIE v2.12.10 tune DefaultPlusMECWithNC.

Component Model

Nuclear model Bodek-Ritchie RFG [185]

Meson exchange currents (MEC) Dytman Empirical [91]

Coherent pion production (COH) Rein-Seghal [87]

Quasi-elastic scattering (QE) Llewellyn-Smith [60]

Resonant pion production (RES) Rein-Seghal [89]

Deep inelastic scattering (DIS) Bodek-Yang [94]

Final state interactions (FSI) INTRANUKE hA2015 [91]

normalisation in all channels around the peak of the lepton momentum distribution with

the biggest differences being in the MEC and DIS channels. There was also a significant

shape difference in the MEC channel, likely the result of the more theoretically motivated

model used in GENIE v3.

The systematic uncertainties were also evaluated for the GENIE v2 rate predictions,

shown in Appendix B, with the total rate uncertainties given in Table 7.10. Most sources

of systematic uncertainties were consistent but there was significant difference in the

GENIE uncertainties. The cause for this becomes apparent when the GENIE universe

variations are plotted, Figure 7.27. There was a bias in the simulated value away from the

mean of the universe variations for GENIE v3. It is unlikely that the model uncertainties

have increased, but it may be the case that the reweighting parameters have not been fully

verified for GENIE version 3. It is possible that Gaussian variations of the parameters

result in non-Gaussian uncertainties on the cross section, but given the large differences

between the uncertainties on the two model configurations this is unlikely.

To investigate the model separation, one model was treated as data, and the statistical

and systematic uncertainties were used to generate covariance matrices for single and

double differential cross section measurements, as in Appendix A. The other model was

treated normally as a Monte Carlo prediction.

The fake data and Monte Carlo prediction were then compared through a χ2 test statistic
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(a) (b)

(c) (d)

(e) (f)

Figure 7.26: (a) GENIE v2 and (b) v3 predicted event rates in true muon momentum.
The event rates are further separated into (c) meson exchange currents, (d) quasi-elastic
scattering, (e) resonant pion production and (f) deep inelastic scattering channels.
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Table 7.10: Summary of systematic uncertainties on the expectation of the total rate
of reconstructed and selected νµ CC interactions in the fiducial volume predicted by the
GENIE v2 model configuration.

Source of uncertainty Percentage

Flux 6.61%

GENIE modelling 5.48%

Detector performance 2.71%

External background subtraction 0.47%

Cosmic misidentification 1.00%

POT counting 2.00%

Total systematic 9.29%

Total statistical 0.06%

Total 9.29%

(a) (b)

Figure 7.27: GENIE systematic universe variations to the reconstructed muon momen-
tum rate for (a) GENIE v3 and (b) GENIE v2.
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Table 7.11: P values from χ2 test for comparisons between GENIE model configurations
with systematic uncertainties. GENIE version 3 (Gv3) was used to generate the fake data.

χ2 ndof p value

Pµ 71.3 17 1.26× 10−8

cos θµ 105.1 24 4.06× 10−12

Pµ, cos θµ 2513.8 79 0

that accounts for correlated variables,

χ2 =
∑
ij

(σi − µi) · Cov−1
ij · (σj − µj) (7.21)

where σi is the measured single or double differential cross section in bin i, µi is the pre-

dicted cross section and Cov−1 is the inverse of the covariance matrix defined in Equation

7.20.

The predictions of the two models in reconstructed muon momentum and cos θ can be

seen in Figure 7.28. The GENIE v3 prediction treated as data is shown with the expected

systematic and statistical uncertainty at the full 6.6 ×1020 POT. The results of the χ2

test are given in Table 7.11. The one dimensional binning was the same as in Figure 7.14

and the two dimensional binning as in Figure 7.15.

The p values appear to show that SBND would have a very strong distinguishing power

between the two model configurations. This is slightly misleading because it does not

account for the systematic uncertainties in the model predictions. There are several

options for including model systematics in p value calculations [186] but this is addition-

ally complicated by the fact that many of the uncertainties are correlated between the

measurement and prediction. This is not the case when studying the rate as no model

dependent corrections have been applied and so direct rate comparisons with models may

provide a better statistical test [182].
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(a) (b)

(c) (d)

Figure 7.28: Comparison of expected measured cross sections from GENIE v2 and v3
model configurations in reconstructed (a) Pµ, (b) cos θµ and Pµ, cos θµ for (c) v3 and (d)
v2. The v3 prediction was treated as data with statistical and systematic uncertainties
shown on the single differential cross section plot. The 2D slice comparisons are shown
in Appendix C.
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Conclusions

SBND has the potential to make an important contribution to the field of neutrino-nucleus

cross section modelling thanks to its high event rate, wide acceptance and millimetre

level position resolution. This thesis has provided an in-depth report on the status of

construction and calibration tools, the procedure that will be used for performing an muon

neutrino charged current inclusive selection, and an estimate of the model separation in

this channel at the expected POT of SBND.

The majority of the cross section model uncertainties arise from the treatment of the nu-

clear target and this will have direct consequences for future oscillation experiments such

as DUNE. It is inadvisable to attempt to directly measure nuclear and cross section model

parameters through the inclusive scattering channel. This is due to large flux uncertain-

ties, unknown momentum transfers and complicated final state interactions. However, it

is the work that goes into the rejection of backgrounds and understanding the detector

when doing an inclusive measurement that provides a gateway to more exclusive channels.

It is the exclusive channels where SBND comes in to its own. The ability to reconstruct

protons emerging from the nucleus, potentially down to kinetic energies of a few 10s of

MeV [121, 187], will provide stringent tests of np-nh models. The charged current channel

with one proton also allows for a less biased reconstruction of the incoming neutrino energy

[188]. It will also allow the study of transverse variables where the contribution of less

well understood effects may be enhanced [120].
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There is also an opportunity to compare the measured neutrino-argon cross sections

with neutrino-oxygen cross sections from the ANNIE detector [189] currently running in

an adjacent building. The two detectors will be exposed to a nearly identical neutrino

flux, and, as in an oscillation analysis, many systematic uncertainties would cancel. A

joint analysis would help to reduce uncertainties and maximise the physics sensitivity

when potentially combining DUNE [7] and Hyper-K [50] results in the future.

With all of its cross section measurements, SBND has a duty to present them in a way

that maximises their usefulness to both the experimental and theoretical communities.

Therefore, for the sake of being able to quickly compare to past theoretical predictions,

the unfolded cross sections in true kinematic variables can be presented. To preserve the

value of the data for future model builders, the data should also be presented in a way

that minimises the dependence on any cross section models.

One way of doing this is to provide cross sections in terms of reconstructed variables,

as in Section 7.2, and a response matrix that can be applied to model predictions. This

method removes the bias incurred by unfolding [167], and the response matrix can be

constructed with minimal model dependencies by having a much finer binning in all of

the true variables that affect the reconstruction [182].

It is also possible to take this one step further and publish the rate measured in the de-

tector along with a response matrix that includes truth binning for background processes

[182]. This may be preferable for some channels as the main sources of backgrounds arise

from other neutrino interactions, so both the signal and background predictions are able

to evolve with improved modelling.

However the measurements are eventually presented, the SBND νµ CC inclusive selection

is in a good position to be quickly calibrated and then applied to data when the detector

becomes operational. The main source of backgrounds, cosmic ray muons, can be reduced

by 99.96%, and the total efficiency of selecting signal events in the defined fiducial volume

is expected to be 67% with a purity of 90%. The huge reduction in external backgrounds

means the measurement will be less sensitive to the often large systematic uncertainties

that are associated with them.
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The large uncertainties on the neutrino flux are a limiting factor to the sensitivity as

it can be difficult to disentangle whether deviations between predictions and data are

from flux or cross section modelling. This work has shown that the flux uncertainty on

the predicted rates are 4.5% smaller than on flux-integrated cross section measurements.

The high event rate can also be used to reduce these uncertainties further through the

measurement of neutrino electron scattering [190]. In the absence of FSI the neutrino

energy can be reconstructed from final state kinematics and the flux can be constrained.

There are several areas in both the selection and cross section analysis that have the

potential to be optimised or improved. The usage of the PDS is still in its infancy and

only a fraction of the available information has been used in this analysis. More advanced

flash matching methods will reduce the external background further while keeping more

neutrino events. The inclusion of additional light information could also be used to

improve the track and calorimetry reconstruction.

The tools developed for identifying the primary muon could be input to an MVA to iden-

tify other track-like particles for exclusive channel measurements. There is also potential

for using deep learning techniques at different stages of the analysis given the volume of

data available from a LArTPC.

Biases between the simulated values and means of the GENIE and flux systematic

variation universes artificially increase the uncertainty on both the rate and cross section

measurements. The simulated parameters could be modified to better align with the most

probable values or the variations could be modified to be more representative of the true

uncertainties. This will reduce the systematic uncertainties and make the comparisons

between models and data more statistically meaningful [167].

In summary, SBND is well placed to begin calibrating and producing charged current

muon neutrino cross section measurements. The high efficiency and purity of the inclusive

measurement along with studies into the identification of other track-like particles should

allow branching into exclusive channels to be done consistently and easily. The tooling

developed to investigate the sensitivity of SBND to different model configurations already

supports exclusive channels, and could be easily adapted to become the interface between
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models and data.

There is great need for more neutrino-nucleus interaction measurements in the precision

era of neutrino oscillation physics, and this need may only grow further if the neutrino

reveals more unexpected properties in the future. SBND will form an integral part of

this, both through studies of short-baseline oscillations and through the largest sample of

neutrino-argon interactions to date.
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Appendix A. Cross section measurement systematics

A.1 Flux

(a)

(b)

(c)

(d)

Figure A.1: The contribution of the flux systematic uncertainties to the single differen-
tial cross sections and corresponding bin correlation matrices for (a) & (b) reconstructed
Pµ and (c) & (d) reconstructed cos θµ.
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Appendix A. Cross section measurement systematics

A.2 GENIE

(a)

(b)

(c)

(d)

Figure A.2: The contribution of the cross section, rescattering, hadronisation and decay
systematic uncertainties to the single differential cross sections and corresponding bin
correlation matrices for (a) & (b) reconstructed Pµ and (c) & (d) reconstructed cos θµ.
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Appendix A. Cross section measurement systematics

A.3 Detector

(a)

(b)

(c)

(d)

Figure A.3: The contribution of the parametrised detector systematic uncertainties
to the single differential cross sections and corresponding bin correlation matrices for
reconstructed (a) & (b) Pµ and (c) & (d) cos θµ.
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Appendix A. Cross section measurement systematics

A.4 Total

(a)

(b) (c)

Figure A.4: (a) Reconstructed one dimensional muon momentum event rates with sta-
tistical and systematic uncertainties. (b) & (c) Covariance and Correlation matrices.
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Appendix A. Cross section measurement systematics

(a)

(b) (c)

Figure A.5: (a) Reconstructed one dimensional muon cos θ event rates with statistical
and systematic uncertainties. (b) & (c) Covariance and Correlation matrices.
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(a)

(b) (c)

Figure A.6: (a) Response matrix for all reconstructed events in two dimensional P and
cos θ distribution. (b) & (c) Covariance and Correlation matrices.
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Appendix B. GENIE v2 rate prediction systematics

B.1 Flux

(a)

(b)

(c)

(d)

Figure B.1: The contribution of the flux systematic uncertainties to the single differential
cross sections and corresponding bin correlation matrices for (a) & (b) reconstructed Pµ
and (c) & (d) reconstructed cos θµ.
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Appendix B. GENIE v2 rate prediction systematics

B.2 GENIE

(a)

(b)

(c)

(d)

Figure B.2: The contribution of the cross section, rescattering, hadronisation and decay
systematic uncertainties to the single differential cross sections and corresponding bin
correlation matrices for (a) & (b) reconstructed Pµ and (c) & (d) reconstructed cos θµ.
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Appendix B. GENIE v2 rate prediction systematics

B.3 Detector

(a)

(b)

(c)

(d)

Figure B.3: The contribution of the parametrised detector systematic uncertainties
to the single differential cross sections and corresponding bin correlation matrices for
reconstructed (a) & (b) Pµ and (c) & (d) cos θµ.
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Appendix B. GENIE v2 rate prediction systematics

B.4 Total

(a)

(b)

(c) (d)

Figure B.4: (a) Reconstructed one dimensional muon momentum event rates with sta-
tistical and systematic uncertainties. (b) Response matrix. (c) & (d) Covariance and
Correlation matrices.
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Appendix B. GENIE v2 rate prediction systematics

(a)

(b)

(c) (d)

Figure B.5: (a) Reconstructed one dimensional muon cos θ event rates with statistical
and systematic uncertainties. (b) response matrix. (c) & (d) Covariance and Correlation
matrices.

- 225 -



Appendix B. GENIE v2 rate prediction systematics

(a) (b)

(c)

(d) (e)

Figure B.6: (a) Response matrix for all reconstructed events in two dimensional P and
cos θ distribution. (b) Bin definitions. (c) Response matrix. (d) & (e) Covariance and
Correlation matrices.
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Appendix C. Double differential cross section slices for model comparisons

Figure C.1: One dimensional momentum slices of the comparison of expected mea-
sured double differential cross sections from GENIE v2 and v3 model configurations in
reconstructed Pµ and cos θµ.
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